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1 Introduction

The differential K-theory is the differential extension of the topological K-theory,

whose basic idea is to combine the topological K-theory with the differential form

information. It is partly motivated by the study of D-branes in theoretical physics

(see e.g., [25,52]). Various models of differential K-theory have been given: Hopkins-

Singer [31], Bunke-Schick [16], Freed-Lott [27], Simons-Sullivan [49], Tradler-Wilson-

Zeinalian [51], Gorokhovsky-Lott [29], etc. For a detailed survey, see [17].

Until now, the equivariant version of the differential K-theory is not well un-

derstood yet. When the group is finite, the equivariant differential K-theory was

studied by Szabo-Valentino [50] and Ortiz [46]. In [18], Bunke and Schick extended
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their model to the orbifold case using the language of stacks, which could be re-

garded as a model of the equivariant differential K-theory when the action has finite

stabilizers only.

Inspired by the model of Bunke-Schick [18], as a parallel version, in this paper,

we will construct a purely analytic model of the equivariant differential K-theory for

compact manifolds when the action has finite stabilizers only, using the local index

technique developed in [12]. Moreover, a detailed proof of the well-definedness of the

push-forward map is given here, which is a question proposed in [16, 18] and is the

main motivation for this new construction. This model is a direct generalization of

[16] without using the language of stacks and could also be regarded as an analytic

model of the differential K-theory for compact orbifolds.

The study of the differential K-theory is always related to the Bismut-Cheeger eta

form [9], which is defined for a family of Dirac operators and is the family extension

of the famous Atiyah-Patodi-Singer eta invariant. Usually, the well-definedness of

the eta form needs one of the following additional conditions:

1. the kernels of the family of Dirac operators form a vector bundle over the base

manifold [9, 19];

2. the family index of the family of Dirac operators vanishes as an element of

the K-group of the base manifold [14,43,44].

In the model of Freed-Lott [27], the eta form with the first condition is used to

define the push-forward map. In the model of Bunke-Schick [16], the eta form under

the second condition, which is defined by Bunke [14] using the taming, is used to

define the differential K-group. From this point of view, in order to extend the

differential K-theory to the equivariant case, we firstly need to extend the Bismut-

Cheeger eta form to the equivariant case.

In [34], the author systematically studied the equivariant eta form under the

first condition and prove the anomaly formula and the functoriality of them, which

should be used to establish an equivariant version of the Freed-Lott model. In this

paper, we will establish the properties of the eta form under the second condition,

extend them to the equivariant case and use them to construct our model. In order

to do finer spectral analysis, we use the notion of the spectral section developed by

Melrose and Piazza in [43, 44] and the Dai-Zhang higher spectral flow [20] instead

of the taming and the Kasporov KK-theory in [14,16].

In [43,44], in order to prove the family index theorem for manifolds with bound-

ary, Melrose and Piazza defined the spectral section and the eta form under the

second condition. In [20], using the spectral section, Dai and Zhang introduced

the higher spectral flow for a family of Dirac type operators on a family of odd di-

mensional manifolds. In this paper, we will extend the spectral section, the higher

spectral flow and the eta form to the equivariant case. Especially, we will define the

higher spectral flow for a family of even dimensional manifolds. Furthermore, we

will prove the anomaly formula and the functoriality of equivariant eta forms using

the language of equivariant higher spectral flow, which is an analogue of the results

in [7, 15, 34] and using the techniques in [19, 39–41]. Note that our proof of the

anomaly formula of the eta forms for a family of even dimensional manifolds relies

on the funtoriality of equivariant eta forms Theorem 3.18, which is highly nontriv-

ial and is the main technical difficulty of this paper. Since the second condition is

a topological condition, there is no additional rigidity assumption in the formulas

here.

Let π : W → B be a proper smooth submersion of compact manifolds with

orientable fibers Z. Let TZ = ker(dπ) be the relative tangent bundle to the fibers
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Z with Riemannian metric gTZ and THW be a horizontal subbundle of TW , such

that TW = THW ⊕TZ. Let o be an orientation of TZ. Let ∇TZ be the Euclidean

connection on TZ defined in (2.14). We assume that TZ has a Spinc structure.

Let LZ be the complex line bundle associated with the Spinc structure of TZ with

a Hermitian metric hLZ and a Hermitian connection ∇LZ . Let (E, hE) be a Z2-

graded Hermitian vector bundle with a Hermitian connection ∇E . Let G be a

compact Lie group which acts on W and B such that π ◦ g = g ◦ π for any g ∈ G.

We assume that the G-action preserves everything. The family of G-equivariant

geometric data F = (W,LZ , E, o, T
HW, gTZ , hLZ ,∇LZ , hE ,∇E) is enough to define

the equivariant Bismut superconnection. We call F an equivariant geometric family

over B for short. Let D(F) be the fiberwise Dirac operators of F defined in (2.23).

Let Ki
G(B), i = 0, 1, be the equivariant K-group of B. Then the family index map

Ind(D(F)) ∈ K∗G(B), where ∗ = 0 or 1 corresponds to the even or odd dimensions

of fibers Z.

Let F0
G(B) (resp. F1

G(B)) be the set of equivalence classes of isomorphic equiv-

ariant geometric families such that the dimensions of all fibers are even (resp. odd).

We denote by F ∼ F ′ if Ind(D(F)) = Ind(D(F ′)). The following proposition is

proved in [18].

Proposition 1.1. There is a ring isomorphism

F∗G(B)/ ∼ ' K∗G(B). (1.1)

Let D be a family of first-order pseudodifferential operators on the fibers of F ,

which is self-adjoint, fiberwise elliptic and commutes with the G-action. Further-

more, if F ∈ F1
G(B), we assume that D preserves the Z2-grading of E; if F ∈ F0

G(B),

we assume that D anti-commutes with the Z2-grading of S(TZ,LZ)⊗̂E, where

S(TZ,LZ) is the spinor with respect to the Spinc structure of TZ. As in [20], we call

such D an equivariant B-family on F (see Definition 3.1). If Ind(D) = 0 ∈ K∗G(B)

and at least one component of the fiber has nonzero dimension, there exists an

equivariant spectral section P (see Definition 3.2) and a family of smoothing opera-

tors AP associated with P , such that D+AP is an invertible equivariant B-family

(see Proposition 3.3). Let P , Q be equivariant spectral sections, we could define

the difference [P −Q] ∈ K∗G(B) (see (3.13) and (3.18)).

Let F ,F ′ ∈ F1
G(B) (resp. F0

G(B)) which have the same topological structure,

that is, the only differences between them are horizontal subbundles, metrics and

connections. Let D0, D1 be two equivariant B-families on F , F ′ respectively. Let

Q0, Q1 be equivariant spectral sections of D0, D1 respectively. We define the

equivariant higher spectral flow sfG{(D0, Q0), (D1, Q1)} between the pairs (D0, Q0)

and (D1, Q1) to be an element in K0
G(B) (resp. K1

G(B)) in Definitions 3.7 and 3.8.

Note that when F is odd, it is the direct extension of the Dai-Zhang higher spectral

flow in [20]; when F is even, it is defined by adding an additional dimension.

Moreover, besides the equivariant geometric family, we could also represent the

elements of equivariant K-group as equivariant higher spectral flows (see Proposition

2.7). From this point of view, the equivariant higher spectral flow here is the same

as the term Ind((E×I)bt) in [18, §2.5.8], which is studied using the KK-theory there.

This enable us to replace the techniques of KK-theory in [18] by that of equivariant

higher spectral flow, which is purely analytic.

Let D be an equivariant B-family on F . A perturbation operator with respect

to D is a family of bounded pseudodifferential operators A such that D + A is an

invertible equivariant B-family on F , which is a generalization of AP . Note that

if at least one component of the fibers of F has nonzero dimension, a perturbation

operator exists with respect to D if and only if IndD = 0 ∈ K∗G(B).
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If the G-action on B is trivial, for any g ∈ G, we define the equivariant eta

form η̃g(F , A) ∈ Ω∗(B,C)/dΩ∗(B,C) with respect to a perturbation operator A

in Definition 3.12. If the equivariant geometric families F and F ′ have the same

topological structure, we prove the anomaly formula as follows.

Theorem 1.2. Assume that the G-action on B is trivial. Let F , F ′ ∈ F∗G(B)

which have the same topological structure. Let A, A′ be perturbation operators with

respect to D(F), D(F ′) and P , P ′ be the APS projections onto the eigenspaces of

the positive spectrum of D(F) +A, D(F ′) +A′ respectively. For any g ∈ G, modulo

exact forms on B, we have

η̃g(F ′, A′)− η̃g(F , A) =

∫
Zg

T̃dg(∇TZ ,∇LZ ,∇
′TZ ,∇

′LZ ) chg(E,∇E)

+

∫
Zg

Tdg(∇
′TZ ,∇

′LZ ) c̃hg(∇E ,∇
′E)

+ chg (sfG{(D(F) +A,P ), (D(F ′) +A′, P ′)}) , (1.2)

where Zg is the fixed point set of g on the fibers Z and the characteristic forms

chg(·), Tdg(·) and the Chern-Simons forms c̃hg(·), T̃dg(·) are defined in Section 2.

Note that when F , F ′ ∈ F0
G(B), the proof of the anomaly formula relies on a

special case of functoriality of equivariant eta forms.

If B = pt, F ∈ F1
G(pt), taking A = PkerD, the orthogonal projection onto the

kernel of D(F), the equivariant eta form here is just the classical reduced equivariant

APS eta invariant. Using Theorem 1.2, we could write the equivariant spectral flow

term in the anomaly formula of eta invariants explicitly.

Let π : V → B be an equivariant surjective proper submersion with compact

orientable fibers Y . We assume that B is compact, G acts trivially on B and TY is

equivariant Spinc. Let FX = (W,LX , E, oX , T
H
πX
W, gTX , hLX ,∇LX , hE ,∇E) be an

equivariant geometric family over V for an equivariant surjective proper submersion

πX : W → V with compact orientable fibers X (see (2.33)). Then πZ := πY ◦ πX :

W → B is an equivariant proper submersion with compact orientable fibers Z.

We could obtain a new equivariant geometric family FZ over B in (2.37). For any

g ∈ G, let Y g and Zg be the fixed point sets of g on the fibers Y and Z respectively.

We obtain the functoriality of equivariant eta forms.

Theorem 1.3. Let AZ and AX be perturbation operators with respect to D(FZ)

and D(FX). Then there exists T0 > 1, such that for any T > T0 and any g ∈ G,

modulo exact forms on B, we have

η̃g(FZ , AZ) =

∫
Y g

Tdg(∇TY ,∇LY ) η̃g(FX , AX)

+

∫
Zg

T̃dg(∇TY,TX ,∇LZ ,∇TZ ,∇LZ ) chg(E,∇E)

+ chg(sfG{(D(FZ,T ) + 1⊗̂TAX , P ), (D(FZ) +AZ , P
′)}), (1.3)

where FZ,T is the equivariant geometric family defined in (3.9), ∇TY,TX is defined

in (3.91) and P , P ′ are the associated APS projections respectively.

In the last section, inspired by [16,18,46], we use the results above to define the

equivariant differential K-theory for the compact manifolds when G acts with finite

stabilizers and study the properties of it.

Essential to our definition is that when the group action has finite stabilizers,

K∗G(B) ⊗ R is isomorphic to the delocalized cohomology H∗deloc,G(B,R) defined in

(4.8), which is the cohomology of complex (Ω∗deloc,G(B,R), d) of differential forms
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on the disjoint union of the fixed point set of a representative element in the con-

jugacy classes. Furthermore, we could define η̃G(F , A) ∈ Ω∗deloc,G(B,R)/Imd (see

Definition 4.2) when G acts with finite stabilizers on B.

A cycle for an equivariant differential K-theory class over B is a pair (F , ρ),

where F ∈ F∗G(B) and ρ ∈ Ω∗deloc,G(B,R)/Im d. The cycle (F , ρ) is called even

(resp. odd) if F is even (resp. odd) and ρ ∈ Ωodd
deloc,G(B,R)/Im d (resp. ρ ∈

Ωeven
deloc,G(B,R)/Im d). Two cycles (F , ρ) and (F ′, ρ′) are called isomorphic if F

and F ′ are isomorphic and ρ = ρ′. Let ÎC
0

G(B) (resp. ÎC
1

G(B)) denote the set

of isomorphism classes of even (resp. odd) cycles over B. Let Fop be the equiv-

ariant geometric family reversing the Z2-grading of E in F , which implies that

Ind(D(Fop)) = − Ind(D(F)). We call two cycles (F , ρ) and (F ′, ρ′) paired if

Ind(D(F)) = Ind(D(F ′)), (1.4)

and there exists a perturbation operator A with respect to D(F + F ′op) such that

ρ− ρ′ = η̃G(F + F
′op, A). (1.5)

Note that from (1.4), Ind(F + F ′op) = 0 ∈ K∗G(B). So η̃G(F + F ′op, A) is well

defined. Let ∼ denote the equivalence relation generated by the relation ”paired”.

Definition 1.4. (Compare with [16, Definition 2.14]) The equivariant differential

K-theory K̂0
G(B) (resp. K̂1

G(B)) is the group completion of the abelian semigroup

ÎC
0

G(B)/ ∼ (resp. ÎC
1

G(B)/ ∼).

Let πY : V → B be an equivariant proper submersion of compact smooth G-

manifolds with compact fibers Y such that TY is oriented and equivariant Spinc.

We assume that the G-action on B has only finite stabilizers. Thus, so is the action

on V . As in [16], we define the equivariant differential K-orientation with respect

to πY in Definition 4.6 and the map π̂Y ! : ÎC
∗
G(V )→ ÎC

∗
G(B) in (4.24). Then using

Theorems 1.2 and 1.3, we prove that

Theorem 1.5. The map π̂Y ! : K̂∗G(V )→ K̂∗G(B) is well-defined.

By Theorems 1.2 and 1.3, in Section 3, we also prove that our model is a ring

valued functor with the usual properties of the differential extension of a generalized

cohomology. Finally, we explain that this model could be naturally regarded as a

model of differential K-theory for orbifolds.

Note that there is no adiabatic limit in Theorem 1.3. So in non-equivariant case,

our proofs in the construction of the differential K-theory simplify that in [16] a

little.

This paper is organized as follows.

In Section 1, we give a geometric description of the equivariant K-theory. In

Section 2, we extend the spectral section to the equivariant case, introduce the

equivariant higher spectral flow for arbitrary dimensional fibers and use them to

obtain the anomaly formula and the functoriality of the equivariant eta forms. In

Section 3, we construct an analytic model for the equivariant differential K-theory

and prove some properties.

Notation: All manifolds in this paper are smooth and without boundary. We

denote by d the exterior differential operator and dB when we like to insist the base

manifold B.

We use the Einstein summation convention in this paper: when an index variable

appears twice in a single term and is not otherwise defined, it implies summation

of that term over all the values of the index.
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We also use the superconnection formalism of Quillen [47] and Bismut-Cheeger

[9]. If A is a Z2-graded algebra, and if a, b ∈ A, then we will note [a, b] as the

supercommutator of a, b. In the whole paper, if E, E′ are two Z2-graded spaces we

will note E⊗̂E′ as the Z2-graded tensor product as in [6, §1.3]. If one of E,E′ is

ungraded, we understand it as Z2-graded by taking its odd part as zero. Let P be

a trace class operator on a Z2-graded space E = E+ ⊕E−. Let P |E+ and P |E− be

the restrictions of P on E+ and E− respectively. We denote by

Trs[P ] = Tr[P |E+
]− Tr[P |E− ]. (1.6)

For the fiber bundle π : W → B, we will often use the integration of the dif-

ferential forms along the oriented fibres Z in this paper. Since the fibers may be

odd dimensional, we must make precisely our sign conventions: for α ∈ Ω•(B) and

β ∈ Ω•(W ), then ∫
Z

(π∗α) ∧ β = α ∧
∫
Z

β. (1.7)

2 Equivariant K-theory

In this section, we explain a geometric description of the equivariant K-theory in

[16,18] for any compact Lie group action and define the push-forward map of equiv-

ariant K-groups in this point of view. In Section 2.1, we recall some elementary

results of the Clifford algebra. In Section 2.2, we introduce the equivariant geo-

metric family. In Section 2.3, we give a geometric description of the equivariant

K-theory. In Section 2.4, we study the push-forward map in equivariant K-theory

using equivariant geometric families.

2.1 Clifford algebra

Let E be an oriented Euclidean space of dimension n. Let C(E) denote the complex

Clifford algebra of E. Relative to an orthonormal basis of E, {ei}16i6n, C(E) is

defined by the relations

eiej + ejei = −2δij . (2.1)

To avoid ambiguity, we denote by c(ei) the element of C(E) corresponding to ei.

The Clifford algebra C(E) is naturally Z2-graded from the N-grading of the tensor

algebra after reduction mod 2. We denote by C(E) = C0(E) ⊕ C1(E). Let Spincn
be the Spinc group associated with C(E) (cf. [32, Appendix D]).

If n = 2k is even, up to isomorphism, C(E) has a unique irreducible representa-

tion, the spinor S(E), which has a Z2-grading obtained from the chirality operator

τE = (
√
−1)kc(e1) · · · c(e2k).

We write S(E) = S+(E) ⊕ S−(E) with respect to this Z2-grading. In fact, there

are isomorphisms of Z2-graded algebras

C(E) ' End(S(E)) ' S(E)⊗̂S(E)∗. (2.2)

For any A ∈ C(E), we write Trs[A] := Tr[τEA] the supertrace on S(E). Note that

S(E) is also a representation of Spincn induced by the Clifford action.

If n = 2k− 1 is odd, C(E) has only two inequivalent irreducible representations.

For arbitrary n, c(ej) 7→ c(ej)c(en+1), 1 6 j 6 n, defines an isomorphism C(E) '
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C0(E ⊕ R) of algebras. Since n is odd, we can regard S±(E ⊕ R) as the two

inequivalent irreducible representations of C(E). Their restrictions to Spincn are

equivalent. In the following, we may and we take S+(E⊕R) as the spinor for C(E),

also denoted by S(E) for the convenience. In particular, the notation Tr[·] on the

spinor refers to the representation S+(E ⊕ R).

Let F be another oriented Euclidean space. Let S(E)⊗̂S(F ) be the Z2-graded

tensor product of S(E) and S(F ). Then it is a Z2-graded representation of C(E)⊗̂C(F )

defined by

(a1⊗̂a2)(s1⊗̂s2) = (−1)|a2|·|s1|(a1s1)⊗̂(a2s2), (2.3)

where a1 ∈ C(E), a2 ∈ C(F ), s1 ∈ S(E), s2 ∈ S(F ) and |a2|, |s1| are degrees

of a2, s1 associated with the Z2-gradings of C(F ), S(E) respectively. We express

S(E)⊗̂S(F ) by S(E) and S(F ) using ungraded tensor product as follows (cf. [9,

(1.10), (1.11)]).

If both dimE and dimF are odd, let C2 = C⊕ C define the grading on C2 and

let J,K ∈ End(C2) denote the involutions

J =

(
0 −

√
−1

√
−1 0

)
, K =

(
0 1

1 0

)
. (2.4)

Note that J2 = K2 = 1, JK = −KJ . Then S(E) ⊗ S(F ) ⊗ C2 with involution

1⊗ 1⊗
√
−1JK is the unique irreducible Z2-graded representation of C(E)⊗̂C(F )

defined by

ai⊗̂bj → ai ⊗ bj ⊗ J iKj , ai ∈ Ci(E), bj ∈ Cj(F ). (2.5)

It is isomorphic to S(E)⊗̂S(F ) as Z2-graded C(E)⊗̂C(F )-representations.

If dimE is even and dimF is odd, then as representations, S(E)⊗̂S(F ) is iso-

morphic to S(E)⊗ S(F ) with C(E)⊗̂C(F )-action defined by

a⊗̂bi → aτ iE ⊗ bi, a ∈ C(E), bi ∈ Ci(F ). (2.6)

If dimE is odd and dimF is even, then as representations, S(E)⊗̂S(F ) is iso-

morphic to S(E)⊗ S(F ) with C(E)⊗̂C(F )-action defined by

ai⊗̂b→ ai ⊗ τ iF b, ai ∈ Ci(E), b ∈ C(F ). (2.7)

If both dimE and dimF are even, the representation S(E)⊗S(F ) with C(E)⊗̂C(F )-

action defined by (2.7) is the unique irreducible one and Z2-graded for the tensor

product grading on S(E)⊗S(F ). It is isomorphic to S(E)⊗̂S(F ) as representations.

Since

C(E ⊕ F ) ' C(E)⊗̂C(F ), (2.8)

S(E)⊗̂S(F ) is also a Z2-graded representation of C(E ⊕ F ). By (2.8), we have the

isomorphism of representations

S(E ⊕ F ) ' S(E)⊗̂S(F ). (2.9)

2.2 Equivariant geometric family

In this subsection, we introduce the equivariant geometric family (cf. [16, 18]).

Let π : W → B be a smooth surjective proper submersion of compact manifolds

with compact fibers Z (possibly non-connected). Let B = tiBi be a finite disjoint
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union of compact connected manifolds. Let Wi be the restriction of W on Bi. Let

Wi = tjWij be a finite disjoint union of compact connected manifolds. Let Zij be

the fibers of the submersions restricted on Wij . We note here that the dimension

of Zij might be zero. In the sequel, we will often omit the subscripts i, j.

Let TZ = ker(dπ) be the relative tangent bundle to the fibers Z over W , which

is a subbundle of TW . We assume that TZ is orientable and carries an orientation

o ∈ H0(W,Z2). Let THπ W be a horizontal subbundle of TW such that

TW = THπ W ⊕ TZ. (2.10)

The splitting (2.10) gives an identification

THπ W
∼= π∗TB. (2.11)

If there is no ambiguity, we will omit the subscript π in THπ W . Let PTZ be the

projection

PTZ : TW = THW ⊕ TZ → TZ. (2.12)

Let gTZ , gTB be Riemannian metrics on TZ, TB. We equip TW = THW ⊕ TZ
with the Riemannian metric

gTW = π∗gTB ⊕ gTZ . (2.13)

Let ∇TW be the Levi-Civita connection on (W, gTW ). Set

∇TZ = PTZ∇TWPTZ . (2.14)

Then ∇TZ is a Euclidean connection on TZ. By [8, Theorem 1.9], we know that

∇TZ only depends on (THW, gTZ).

Let C(TZ) be the Clifford algebra bundle of (TZ, gTZ), whose fiber at x ∈W is

the Clifford algebra C(TxZ) of the Euclidean space (TxZ, g
TxZ).

We make the assumption that the oriented vector bundle (TZ, o) has a

Spinc structure. Then there exists a complex line bundle LZ over W such that

ω2(TZ) = c1(LZ) mod 2, where ω2 denotes the second Stiefel-Whitney class and

c1 denotes the first Chern class. Let S(TZ,LZ) be the fundamental complex spinor

bundle for (TZ,LZ), which has a smooth action of C(TZ) (cf. [32, Appendix D.9]).

Locally, the spinor bundle S(TZ,LZ) may be written as

S(TZ,LZ) = S(TZ)⊗ L1/2
Z , (2.15)

where S(TZ) is the fundamental spinor bundle for the (possibly non-existent) spin

structure on TZ, and L
1/2
Z is the (possibly non-existent) square root of LZ . Let

hLZ be a Hermitian metric on LZ . Then from (2.15), the metrics gTZ and hLZ

induce a Hermitian metric on S(TZ,LZ), which we denote by hSZ for simplicity.

Let ∇LZ be a Hermitian connection on (LZ , h
LZ ). Similarly, we denote by ∇SZ

the connection on S(TZ,LZ) induced by ∇TZ and ∇L from (2.15). Then ∇SZ is

a Hermitian connection on (S(TZ,LZ), hSZ ). Moreover, it is a Clifford connection

associated with ∇TZ , i.e., for any U ∈ TW , V ∈ C∞(W,TZ),[
∇SZU , c(V )

]
= c

(
∇TZU V

)
. (2.16)

In the following, we often simply denote the spinor bundle S(TZ,LZ) by SZ . If

n = dimZ is even, SZ is Z2-graded and the action of TZ exchanges the Z2-grading.
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Let E = E+ ⊕ E− be a Z2-graded smooth complex vector bundle over W with

Hermitian metric hE , for which E+ and E− are orthogonal, and let ∇E be a Her-

mitian connection on (E, hE) preserving the Z2-grading. Set

∇SZ⊗̂E := ∇SZ ⊗̂1 + 1⊗̂∇E . (2.17)

Then ∇SZ⊗̂E is a Hermitian connection on (SZ⊗̂E, hSZ ⊗ hE).

Let G be a compact Lie group which acts on W and B such that for any g ∈ G,

π ◦ g = g ◦ π. We assume that the G-action preserves the splitting (2.10) and the

Spinc structure of TZ. Thus TZ, LZ , SZ are G-equivariant vector bundles. We

assume that gTZ , hLZ , ∇LZ are G-invariant. We further assume that E is a G-

equivariant Z2-graded complex vector bundle and hE , ∇E are G-invariant. Note

that the G-action here may be nontrivial on B.

Definition 2.1. (Compare with [16, Definition 2.2]) An equivariant geometric

family F over B is a family of G-equivariant geometric data

F = (W,LZ , E, o, T
HW, gTZ , hLZ ,∇LZ , hE ,∇E) (2.18)

described above. We call the equivariant geometric family F is even (resp. odd) if

for any connected component of fibers, the dimension is even (resp. odd).

Definition 2.2. (Compare with [16, §2.1.7]) Let F and F ′ be two equivariant

geometric families over B. An isomorphism F ∼→ F ′ consists of the following data:

E E′

W W ′

B

fE

f

π π′

where

1. f is a diffeomorphism commuting with the G-action such that π′ ◦ f = π,

which implies that f preserves the relative tangent bundle;

2. f preserves the orientation and the Spinc structure of the relative tangent bun-

dle, which implies that there exists an equivariant complex line bundle isomorphism

fL : LZ → L′Z ;

3. fE : E → E′ is an equivariant vector bundle isomorphism over f , which

preserves the Z2-grading;

4. f preserves the horizontal subbundle and the vertical metric;

5. fL and fE preserve the metrics and the connections on the vector bundles.

If only the first three conditions hold, we say that F and F ′ have the same

topological structure.

Let F0
G(B) (resp. F1

G(B)) be the set of equivalence classes of even (resp. odd)

equivariant geometric families over B.

For two equivariant geometric families F ,F ′ over B, we can form their sum F+F ′
over B as a new equivariant geometric family: the underlying fibration of the sum

is π tπ′ : W tW ′ → B, where t is the disjoint union and the remaining structures

of F + F ′ are induced in the obvious way. Let F∗G(B) = F0
G(B)⊕ F1

G(B). It is an

additive abelian semigroup.

For F ,F ′ ∈ F∗G(B), we can also form their product F ×B F ′ over B. The

total space of the underlying fibration of F ×B F ′ is W ×B W ′ := {(w,w′) ∈
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W ×W ′ : π(w) = π′(w′)} and the fiber is Z × Z ′. Let prW : W ×B W ′ → W and

prW ′ : W ×BW ′ →W ′ be the obvious projections. The complex vector bundle now

is pr∗WE⊗̂pr∗W ′E
′. The remaining structures of F ×B F ′ are induced in the obvious

way.

Let B, B′ be two compact manifolds with smooth G-action. Let f : B×B′ → B

be the projection onto the first part. For any F ∈ F∗G(B), we could construct the

pullback f∗F ∈ F∗G(B × B′) in a natural way. Remark that in general case, for a

G-equivariant map f : B′ → B and F ∈ F∗G(B), f∗F is hard to define canonically

because we cannot choose a canonical horizontal subbundle in f∗F . We will show

more details in Section 4.3 later.

Definition 2.3. The opposite family Fop of an equivariant geometric family F
is obtained by reversing the Z2-grading of E.

2.3 Equivariant K-Theory

In this subsection, we give some examples of the equivariant geometric families and

a geometric description of the equivariant K-theory.

Let K0
G(B) be the G-equivariant K0-group of B, which is the Grothendieck group

of the equivalence classes of G-equivariant topological complex vector bundles over

B (cf. [48]). Since G is compact, by Proposition A.4, it is also the Grothendieck

group of the equivalence classes of G-equivariant smooth complex vector bundles.

Note that the ring structure of the K0-group is induced by the tensor product of

the complex vector bundles.

We lift the G-action on B × S1 such that the G-action on S1 is trivial. Take

s ∈ S1 fixed. Let i : B 3 b → (b, s) ∈ B × S1 be the G-equivariant inclusion map.

Let i∗ : K0
G(B × S1)→ K0

G(B) be the induced homomorphism. Let K1
G(B) be the

G-equivariant K1-group of B. By [48, Definitions 2.7 and 2.8], we have the split

short exact sequence

0 −→ K1
G(B)

j−→ K0
G(B × S1)

i∗−→ K0
G(B) −→ 0, (2.19)

where j is induced by the suspension isomorphism K1
G(B) ' K̃0

G(B ∧S1) ' ker(i∗)

(cf. [48, p136]). Here B ∧ S1 is the smash product of B and S1 and K̃0
G(B ∧ S1) is

the G-equivariant reduced K0-group of B ∧ S1.

Now we introduce another explanation of K1
G(B). Let V be a finite dimensional

complex unitary representation of G. If F ∈ C∞(B,End(V )) such that for any

b ∈ B, F (b) ∈ End(V ) is unitary and for any g ∈ G, v ∈ V ,

g(F (b)v) = F (gb)(gv), (2.20)

we say F is a G-invariant unitary element of C∞(B,End(V )). In this case, for

(b, t, v) ∈ B × [0, 1] × V , the relation (b, 0, v) ∼ (b, 1, F (b)v) forms a G-equivariant

smooth Hermitian vector bundle W over B × S1. Let U = B × S1 × V be the

G-equivariant trivial bundle over B×S1 as in (A.2). Then from (2.19), [W ]− [U ] ∈
ker(i∗) corresponds to an element [F ] ∈ K1

G(B).

Lemma 2.4. For any y ∈ K1
G(B), there exists a finite dimensional complex

unitary representation V of G, such that y can be represented as a G-invariant

unitary element of C∞(B,End(V )).

Proof. By (2.19), an element y ∈ K1
G(B) can be represented as an element x =

j(y) ∈ K0
G(B × S1) such that i∗x = 0 ∈ K0

G(B). We write x = W − U , where W

and U are equivariant smooth complex vector bundles over B×S1. By Proposition

A.2, we may and we will assume that U is an equivariant trivial complex vector
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bundle over B × S1 associated with a finite dimensional complex G-representation

V as in (A.2). Note that B × S1 ' B × R/Z. We assume that i(B) = B × {1/2}.
Since i∗x = W |B×{1/2} − U |B×{1/2} = 0 ∈ K0

G(B), by Proposition A.2, we may

and we will assume that W |B×{1/2} is isomorphic to the equivariant trivial bundle

(B×{1/2})×V over B×{1/2} as equivariant smooth complex vector bundles. Since

(0, 1) is contractible, as equivariant smooth complex vector bundles over B× (0, 1),

W |B×(0,1) ' (IdB ×p1/2)∗(W |B×{1/2}) where p1/2 : (0, 1) → 1/2 is the constant

map. Since B × (0, 1) × V = (IdB ×p1/2)∗((B × {1/2}) × V ) as complex vector

bundles over B× (0, 1), there exists a G-equivariant smooth complex vector bundle

isomorphism

f : W |B×(0,1) → B × (0, 1)× V. (2.21)

Let h : B × (0, 1) × V → V be the obvious projection. For any b ∈ B, v ∈ V , we

could choose a section s ∈ C∞(B×S1,W ) such that limt→0 h◦ f(s(b, t)) = v. Then

we define

F (b)v := lim
t→1

h ◦ f(s(b, t)) ∈ V. (2.22)

Note that the definition of F (b) ∈ End(V ) does not depend on the choices of the

isomorphic map f and the section s. Take a G-invariant Hermitian metric on W

which induces a G-invariant Hermitian inner product on V . It is obvious that F is

a G-invariant unitary element of C∞(B,End(V )) and [F ] = y ∈ K1
G(B).

The proof of Lemma 2.4 is completed.

For an equivariant geometric family F , the fiberwise Dirac operator D(F) asso-

ciated with F is defined by

D(F) :=
∑
i

c(ei)∇SZ⊗̂Eei , (2.23)

where {ei} is a local orthonormal frame of TZ. Note that the definition of the

fiberwise Dirac operator is independent of the choice of the local orthonormal frame.

From (2.23), the G-action commutes with D(F). If F is isomorphic to F ′, from

Definition 2.2 and (2.23), the isomorphism preserves the fiberwise Dirac operator.

So the fiberwise Dirac operator can be defined on an element of F∗G(B). For an even

(resp. odd) equivariant geometric family F , the classical construction of Atiyah-

Singer assigns to this family its equivariant (analytic) index Ind(D(F)) ∈ K0
G(B)

(resp. K1
G(B)) (cf. [4,5]). Remark that Ind(D(F)) depends only on the topological

structure of F . It induces a map

Ind : F∗G(B)→ K∗G(B),

F 7→ Ind(D(F)).
(2.24)

Let K∗G(B) = K0
G(B)⊕K1

G(B). Since

Ind(D(F + F ′)) = Ind(D(F)) + Ind(D(F ′)) ∈ K∗G(B), (2.25)

the equivariant index map in (2.24) is a semigroup homomorphism. It is well-known

that if F and F ′ are even,

Ind(D(F ×B F ′)) = Ind(D(F)) · Ind(D(F ′)) ∈ K0
G(B). (2.26)

Example 2.5. a) Let (E, hE) be an equivariant Z2-graded smooth Hermitian vec-

tor bundle over B with a G-invariant Hermitian connection ∇E . Then (E, hE ,∇E)
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can be regarded as an even equivariant geometric family F for Z = pt. In this case,

D(F) = 0 and Ind(D(F)) = [E+]− [E−] ∈ K0
G(B).

b) Let W = B×CP 1 with G-action which acts trivially on CP 1. Then the com-

plex line bundle O(1) over CP 1 can be naturally extended on W . Thus (W,O(1))

with canonical metrics, connections, the standard orientation o of CP 1 and the

Spin structure on CP 1 form an even equivariant geometric family FS over B. Let

D
O(1)
CP 1 be the Dirac operator on CP 1 associated with O(1). Since Ind(D

O(1)
CP 1 ) =

〈c1(O(1)), [CP 1]〉 = 1, from (2.26), for even equivariant geometric family F in a),

we have Ind(D(F ×B FS)) = Ind(D(F)) ∈ K0
G(B).

c) (Compare with [44, §5] and [14, §2.2.3.8]) Let B = S1
θ = R/Z, W = S1

θ × S1
t

and π : W → B be the projection onto the first part. We consider the Hermitian

line bundle (L, hL) which is obtained by identifying

(θ = 0, t, v), (θ = 1, t, exp(−2πt
√
−1)v) ∈ [0, 1]× S1

t × C. (2.27)

Then

∇L = d+ 2π (θ − 1/2)
√
−1dt (2.28)

is a Hermitian connection on (L, hL) (cf. [11, p.124]). We choose the Z2-grading

of L such that L+ = L and L− = 0. We consider the Spin structure on S1
t as the

desired Spinc structure. Then we get an odd geometric family FL after choosing

the natural geometric data. In fact, since c1(L) = dtdθ, Ind(D(FL)) is a generator

of K1(S1) ' Z by family index theorem.

d) Let F ∈ F∗G(B). Let p1 and p2 be the projections onto the first and second

parts of B × S1 respectively. We take FL as in c). Then p∗1F ×B×S1 p∗2FL is an

equivariant geometric family over B×S1. From Proposition B.1 (cf. also the proof

of [11, Theorem 2.10]), for F ∈ F1
G(B), there exists an inclusion i : B → B × S1

such that i∗ Ind(D(p∗1F ×B×S1 p∗2FL)) = 0. Moreover, as an element of K1
G(B) in

the sense of (2.19), by an equivariant version of [44, Proposition 6], we have

j
(

Ind(D(F))
)

= Ind(D(p∗1F ×B×S1 p∗2FL)), (2.29)

where j is the map in (2.19). This example is essential in our construction of the

higher spectral flow for even case. For the sake of reader’s convenience, we will show

more details in Appendix B.

We denote by F ∼ F ′ if Ind(D(F)) = Ind(D(F ′)). It is an equivalence relation

and compatible with the semigroup structure. So F∗G(B)/ ∼ is a semigroup and the

map

Ind : F∗G(B)/ ∼ −→ K∗G(B) (2.30)

is an injective semigroup homomorphism.

By Definition 2.3, we have

Ind(D(Fop)) = − Ind(D(F)). (2.31)

After defining −F := Fop, the semigroup F∗G(B)/ ∼ can be regarded as an abelian

group. So, by (2.31), the equivariant index map in (2.30) is a group homomorphism.

Note that K∗G(B) has a ring structure [2], and by (2.29), (2.26) holds for any F ,F ′ ∈
F∗G(B). Thus the equivariant index map in (2.30) is also a ring homomorphism. In

fact, it is even a ring isomorphism [18, §2.5.5]. We rewrite the proof in our notation

here for the completeness.



Bo Liu Sci China Math 13

Proposition 2.6. The equivariant index map Ind in (2.30) is surjective. In other

words, we have the Z2-graded ring isomorphism

F∗G(B)/ ∼ ' K∗G(B). (2.32)

Proof. When ∗ = 0, we can get the proposition directly from Example 2.5 a) or

b).

When ∗ = 1, from the proof of Lemma 2.4, for any [F ] ∈ K1
G(B), there exist

equivariant complex vector bundles W and U such that [W ] − [U ] ∈ K0
G(B × S1)

corresponds to [F ] ∈ K1
G(B). Moreover, after taking the natural geometric data,

we get an odd equivariant geometric family F over B with fibers S1 and Z2-graded

equivariant complex vector bundle W⊕U . As in [14, §2.2.2.3], we have Ind(D(F)) =

[F ] ∈ K1
G(B).

The proof of Proposition 2.6 is completed.

Remark 2.7. Note that if we replace the Spinc condition of the geometric family

by the general Clifford module condition (which is the setting in [16,18]) or the Spin

condition, Proposition 2.6 also holds. Since we don’t use the language of Clifford

modules here, our definition of Fop in Definition 2.3 is simpler than that in [16,18].

In fact, in the sense of (2.32), they are the same.

2.4 Push-forward map

In this subsection, we define the push-forward map in equivariant K-theory using

the equivariant geometric families.

Let πY : V → B be a G-equivariant smooth surjective proper submersion of

compact manifolds with compact orientable fibers Y . We simply assume that the

dimensions of all connected components of Y have the same parity. Let oY ∈
H0(V,Z2) be an orientation of the relative tangent bundle TY .

Definition 2.8. (Compare with [18, Definition 3.1]) An equivariant K-orientation

of πY is an equivariant Spinc structure of TY . Let OG(πY ) be the set of equivariant

K-orientations.

Suppose that πY has an equivariant K-orientation OY ∈ OG(πY ). For j =

0, 1, let N(j) := j (resp. (j + 1) mod 2) if dimY is even (resp. odd). We will

use Proposition 2.6 to define the push-forward map of equivariant K-groups πY ! :

Kj
G(V )→ K

N(j)
G (B) as follows.

Let πX : W → V be the submersion with compact orientable fibers X. Let

FX = (W,LX , E, oX , T
H
πX
W, gTX , hLX ,∇LX , hE ,∇E) (2.33)

be a G-equivariant geometric family in FjG(V ). Then πZ := πY ◦ πX : W → B is

a smooth submersion with compact orientable fibers Z. We have the diagram of

smooth fibrations:

X Z W

Y V B.

πX
πY

πZ

Set THπX
Z := THπX

W ∩ TZ. Then we have the splitting of smooth vector bundles

over W ,

TZ = THπX
Z ⊕ TX, (2.34)
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and

THπX
Z ∼= π∗XTY. (2.35)

Let oZ := π∗XoY ∪ oX ∈ H0(W,Z2). Since TY and TX have equivariant Spinc

structures, so is TZ. Let LY be the equivariant complex line bundle associated

with the equivariant Spinc structure of TY . Set

LZ := π∗XLY ⊗ LX . (2.36)

Let gTY be a G-invariant Riemannian metric on TY . Let hLY be a G-invariant

Hermitian metric on LY and∇LY be aG-invariant Hermitian connection on (LY , h
LY ).

Take geometric data (THπZ
W, gTZ , hLZ ,∇LZ ) of πZ such that THπZ

W ⊂ THπX
W ,

gTZ = π∗Xg
TY ⊕ gTX , hLZ = π∗Xh

LY ⊗hLX and ∇LZ = π∗X∇LY ⊗ 1 + 1⊗∇LX . We

get a new equivariant geometric family over B,

FZ := (W,LZ , E, oZ , T
H
πZ
W, gTZ , hLZ ,∇LZ , hE ,∇E). (2.37)

We write FZ = πY !(FX).

Theorem 2.9. For equivariant K-orientation OY ∈ OG(πY ) fixed, the push-

forward map

πY ! : Kj
G(V )→ K

N(j)
G (B),

[FX ] 7→ [FZ ]
(2.38)

is a well-defined group homomorphism and independent of the geometric data (THπZ
W, gTY , hLY ,∇LY ).

Proof. We firstly assume that the map πY ! is well-defined. Then the remaining

results follow from the definition of the equivariant family index.

The well-defined property of πY ! will be proved in Section 3.2 later.

Let πU : B → S be a G-equivariant smooth surjective proper submersion of

compact manifolds with compact oriented fibers U and an equivariant K-orientation

OU . Then πA := πU ◦ πY : V → S is a G-equivariant smooth submersion with an

equivariant K-orientation constructed by OY and OU . From the construction of the

push-forward map and Theorem 2.9, the following theorem is obvious.

Theorem 2.10. We have the equality of homomorphisms

πA! = πU ! ◦ πY ! : K∗G(V )→ K∗G(S). (2.39)

3 Equivariant higher spectral flow and equivariant eta form

In this section, we extend the Melrose-Piazza spectral section to the equivariant case,

introduce the equivariant version of Dai-Zhang higher spectral flow for arbitrary

dimensional fibers and use them to prove the anomaly formula and the functoriality

of the equivariant Bismut-Cheeger eta forms. In this section, we use the notation

in Section 2.

In Section 3.1, we introduce the equivariant version of the spectral section and

prove the main properties. In Section 3.2, we complete the proof of the well-

definedness of the push-forward map in Theorem 2.9. In Section 3.3, we define

the higher spectral flow for fibrations with even-dimensional fibers and extend the

higher spectral flow to the equivariant case. Moreover, we prove that the equivari-

ant K-group could be generated by the equivariant higher spectral flows. In Section

3.4, we explain the family local index theorem. In Section 3.5, we define the equiv-

ariant eta form associated with a perturbation operator. In Section 3.6, we prove



Bo Liu Sci China Math 15

the anomaly formula of equivariant eta forms in odd case. In Sections 3.7-3.9, we

prove the functoriality of equivariant eta forms and use it to prove the anomaly

formula in even case.

3.1 Equivariant spectral section

In this subsection, we extend the spectral section of Melrose-Piazza [43,44] and the

main properties of them to the equivariant case.

Definition 3.1. (Compare with [20, Definition 1.6]) Let F ∈ F∗G(B) and at least

one component of the fiber has nonzero dimension. An equivariant B-family on

F is a smooth family of self-adjoint pseudodifferential operators D = {Db}b∈B on

the fibers of F , which commutes with the G-action and is first order on nonzero

dimensional fibers, such that

(a) it preserves the Z2-grading of E when the fiber is odd dimensional;

(b) it anti-commutes with the Z2-grading of SZ⊗̂E when the fiber is even dimen-

sional.

If the dimension of the fiber is zero, an equivariant B-family is a self-adjoint

endomorphism of E which commutes with the G-action and anti-commutes with

the Z2-grading of E.

If the principal symbol of Db is the same as that of the fiberwise Dirac operator

D(F)|Zb
for any b ∈ B, we call this equivariant B-family D a B-family of equivariant

Dirac type operator. In this case, we have Ind(D) = Ind(D(F)) ∈ K∗G(B). Recall

that if the fiber is a point, the fiberwise Dirac operator is zero.

Definition 3.2. (Compare with [43, Definition 1] and [44, Definition 1]) An

equivariant Melrose-Piazza spectral section of an equivariantB-familyD = {Db}b∈B
is a continuous family of self-adjoint pseudodifferential projections Pb on the L2-

completion of the domain of Db, which commutes with the G-action, such that

(a) for some smooth function f : B → R (depending on P ) and every b ∈ B,

Dbu = λu =⇒

{
Pbu = u, if λ > f(b),

Pbu = 0, if λ < −f(b);
(3.1)

(b) when the fiber is odd dimensional, P commutes with the Z2-grading of E;

(c) when the fiber is even dimensional,

τSZ⊗̂E ◦ P + P ◦ τSZ⊗̂E = τSZ⊗̂E , (3.2)

where τSZ⊗̂E is the Z2-grading of SZ⊗̂E.

The following proposition is the equivariant extension of the results in [43, 44].

Remark that in our setting the dimension of the fiber might be zero. In the proof

of this proposition, we will use the equivariant version of the Fredholm theory for

fiberwise elliptic operators. For the references, see [3] and [26, Appendix A.5]. We

will also show some details in Appendix B.

Proposition 3.3. Let F ∈ F∗G(B) and D be an equivariant B-family on F .

(i) (Compare with [43, Proposition 1] and [44, Proposition 2]) If there exists an

equivariant spectral section of D on F ∈ F0
G(B) (resp. F1

G(B)), then Ind(D) = 0 ∈
K0
G(B) (resp. K1

G(B)). Conversely, if F ∈ F0
G(B) (resp. F1

G(B)), Ind(D) = 0 ∈
K0
G(B) (resp. K1

G(B)) and at least one component of the fibers has the nonzero

dimension, there exists an equivariant spectral section of D.

(ii) (Compare with [43, Proposition 2]) For F ∈ F1
G(B), given equivariant spectral

sections P , Q of D, there exists an equivariant spectral section R of D such that

PR = R and QR = R. We say that R majors P , Q.
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(iii) (Compare with [43, Lemma 8] and [44, Lemma 1]) If there exists an equiv-

ariant spectral section P of D, then there exists a family of self-adjoint equivariant

smoothing operators AP (when the dimension of the fibers are zero, it descends to

a self-adjoint equivariant endmorphism of the complex vector bundle) with range in

a finite sum of eigenspaces of D such that D + AP is an invertible equivariant

B-family and P is the Atiyah-Patodi-Singer (APS) projection onto the eigenspaces

of the positive spectrum of D +AP .

Proof. Case 1: Let F ∈ F1
G(B). We use the notation of Appendix B in this part

of the proof.

We write F = (W, o,E), E = E+ ⊕ E− and omit other data for simplicity. Set

F+ = (W, o,E+⊕{0}) and F− = (W, o, {0}⊕E−). Then Ind(D(F)) = Ind(D(F+ +

F−)) = Ind(D(F+)) + Ind(D(F−)). Set F re
− := (W,−o,E− ⊕ {0}), where −o is the

reversion of the orientation o and E− is equipped with the positive Z2-grading.

Then there is a natural bijective map F− → F re
− by identification. Note that

Ind(D(F−)) = Ind(D(F re
− )). We have Ind(D(F)) = Ind(D(F+ + F re

− )). So using

this bijective map, we only need to prove our proposition in odd case when E− = 0

in F .

(i) Let T = D/(1 + D2)1/2. Then T is bounded, G-equivariant and Ind(T ) =

Ind(D) ∈ K1
G(B). As in Appendix B,

√
−1T can be extended to an equivariant

map from B to Fred1(L2(G) ⊗H), where H is a separable Hilbert space. Assume

that there exists an equivariant spectral section P of D. It could be extended

on L2(G) ⊗ C(R) ⊗ H in the same way as T , which is also denoted by P . From

the definition of the equivariant spectral section, PT (1−P ) and (1−P )TP are G-

equivariant self-adjoint finite rank operators. Let K = (1+D2)−1/2 on E . Then K is

aG-equivariant self-adjoint compact operator on L2(G)⊗C(R)⊗H by taking zero on

the complement of E . Thus from the G-homotopy invariance, the equivariant family

index of T in K1
G(B) is the same as that of P (T + rK)P + (1−P )(T − rK)(1−P )

for r > 0. When r is large enough, for any b ∈ B, Pb(Tb + rKb)Pb is positive and

(1− Pb)(Tb − rKb)(1− Pb) is negative. Therefore we have Ind(T ) = 0 ∈ K1
G(B).

If Ind(D) = Ind(T ) = 0 ∈ K1
G(B), we modify the construction of the spectral sec-

tion in the proof of [43, Proposition 1]. All equivariant operators here are regarded as

families of equivariant operators acting on L2(G)⊗H. Since Ind(T ) = 0 ∈ K1
G(B),

from (B.1),
√
−1T is G-homotopic to an invertible element in Fred1(L2(G) ⊗ H)

through
√
−1Tt ∈ Fred1(L2(G) ⊗ H), t ∈ [0, 1]. As in [43], all operators in these

families have discrete spectrum in some fixed open interval (−ε, ε), 0 < ε < 1.

Choose χ ∈ C∞(R) with χ(λ) = 0 if λ < 0 and χ(λ) = 1 if λ > ε/2. Set J = χ(T ).

Then J is G-equivariant and smooth on b ∈ B. From the G-homotopy above, we

could construct a smooth family of G-equivariant projections P ′ on L2(G) ⊗H in

the same way as in the proof of [43, Proposition 1] such that J −P ′ has finite rank

and the range of J − P ′ lies in E . By taking spectral cuts as in the proof of [33,

Theorem 3], we could obtain an equivariant projection P which differs from J by

an equivariant operator whose range lies in the span of a finite number of eigen-

functions of T on E for each b ∈ B (see also the proof of [54, Proposition 3.7]). So

P |E is an equivariant spectral section.

(ii) We extend the equivariant spectral section P on the equivariant trivial Hilbert

bundle as before and consider the family of operators PTP on the range of P . These

are equivariant self-adjoint operators and from (3.1), there exists N > 0, such that

all but the first N eigenfunctions of PTP are eigenfunctions of D. Since B is

compact, we could take 0 < a1 < 1 such that the first N eigenvalues of PTP are

all less than a1 for any b ∈ B. Take a2 ∈ (a1, 1) and choose χ1 ∈ C∞(R) with
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χ1(λ) = 0 if λ 6 a1 and χ1(λ) = 1 if λ > a2. Then for M large enough, the

range of P − χ1(T ) is an equivariant subbundle of the range of P (cf. [6, Lemma

9.9]) such that it contains the first N eigenfunctions and is contained in the span

of the first M eigenfunctions of PTP . Let R be the orthogonal projection on the

complement of this subbundle in E . Then R is an equivariant spectral section such

that PR = R. If the integer N is chosen large enough, then the projection R will

have range contained in the intersection of the ranges of any two given equivariant

spectral sections P and Q. So QR = R.

(iii) Let Pλ∈[a1,a2],b(Db) be the span of the eigenfunctions corresponding to the

eigenvalues λ ∈ [a1, a2] of Db. Since B is compact, we can choose s > 0, such that

P is an equivariant spectral section for f(b) ≡ s. By the proof of (ii), we can choose

equivariant spectral sections R′, R′′, such that for any b ∈ B, R′b = 0 on Pλ6s,b(Db)

and R′′b = I on Pλ>−s,b(Db). Then the operator

D̃ = R′DR′ + sPR′′(I −R′) + (I −R′′)D(I −R′′)− s(I − P )R′′(I −R′) (3.3)

is an invertible equivariant B-family (cf. [43, (8.3)]). Then AP = D̃ − D satisfies

all conditions.

Case 2: Let F ∈ F0
G(B) and at least one component of the fibers has nonzero

dimension.

Let D± := D|(SZ⊗̂E)±
. Let S be a first order positive equivariant elliptic pseudod-

ifferential operator. Then in the sense of (B.1), D is G-homotopic to

(
S D−

D+ −S

)
,

which is invertible. Thus the equivariant K1-index of the whole self-adjoint family

D vanishes. By the same process in the proof of (i) in the odd case, there ex-

ists an equivariant spectral section P ′ in the odd sense, which means that it is an

equivariant spectral section without the condition (3.2).

(iii) By the proof of (ii) for the odd case, we could choose P ′, which is an equiv-

ariant spectral section in the odd sense, such that P ′DP ′ is positive on the range

of P . We simply denote by τ = τSZ⊗̂E . Then the operator

AP = P − P ′ − τ(P − P ′)τ + P ′DP ′ + τP ′τDτP ′τ −D (3.4)

satisfies all conditions (cf. [44, (2.11), (2.12)]).

(i) Assume that Ind(D) = 0 ∈ K0
G(B). As in the proof of (ii) for the odd case, for

r > 0 fixed, we can choose an equivariant spectral section P ′ in the odd sense such

that P ′ = 0 on Pλ6r(D). From Definition 3.1 (b), we have τP ′τ = 0 on Pλ>−r(D).

Let V = ker(P ′+ τP ′τ). Then V is a finite dimensional equivariant complex vector

bundle over B. We split the complex vector bundle by V = V+ ⊕ V− with respect

to τ . Then Ind(D) = [V+]− [V−] ∈ K0
G(B). The assumption Ind(D) = 0 ∈ K0(B)

implies that there exists a complex vector bundle U such that V+⊕U ' V−⊕U as

complex vector bundles.

We choose another equivariant spectral section P ′′ in the odd sense such that

the range of P ′ − P ′′ is an equivariant complex vector bundle whose rank is large

enough. Let V ′ = ker(P ′′ + τP ′′τ) and V ′ = V ′+ ⊕ V ′− with respect to τ . Let W±
be the complex vector bundles such that V ′± = V± ⊕W±. Then D+ induces an

isomorphism between W+ and W−. Since the rank of W± is large enough, there

exist subbundles U+ ⊂ W+ and U− ⊂ W− such that U+ ' U− ' U as complex

vector bundles and D+(U+) = U−. So V ′+ ' V ′− as complex vector bundles. Since
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Ind(D) = 0 ∈ K0
G(B), this isomorphism is G-equivariant. Let

PV =
1

2

(
1

√
−1

−
√
−1 1

)
(3.5)

on V ′ = V ′+ ⊕ V ′−. Then P = P ′′ + PV is an equivariant spectral section.

The other direction follows from (iii) easily.

Case 3: The dimensions of all fibers are zero.

In this case, for any self-adjoint projection P ∈ End(E) commuting with the G-

action, (3.1) holds. Thus the only restriction for P as an equivariant spectral section

is (3.2). If there exists an equivariant spectral section P , we take AP = P−τPτ−D.

Thus D + AP = 2P − Id is invertible and P is the projection onto the eigenspaces

of the positive eigenvalues of D +AP . Thus Ind(D) = 0 ∈ K0
G(B).

The proof of Proposition 3.3 is completed.

Remark 3.4. In zero dimensional case, we could also construct an equivariant

spectral section of D(F + Fop) as in (3.5).

Definition 3.5. LetD be an equivariantB-family on F . A perturbation operator

with respect to D is a family of bounded pseudodifferential operators A such that

D +A is an invertible equivariant B-family on F .

Note that if there exists an equivariant spectral section of D, the smoothing

operator associated with it is a perturbation operator.

Remark that the tamings in [14, 16, 18] are perturbation operators when the

manifolds there are smooth, compact and without boundary.

3.2 Well-defined property for the push-forward map

In this subsection, we show that the push-forward map defined in Theorem 2.9 is

well-defined. We use the notation in Section 2.4.

Lemma 3.6. If Ind(D(FX)) = 0 ∈ Kj
G(V ), then Ind(D(FZ)) = 0 ∈ KN(j)

G (B),

j = 0, 1.

Proof. We only need to prove this lemma when the dimensions of the fibers are

nonzero. Let

gTZT = π∗Xg
TY ⊕ 1

T 2
gTX . (3.6)

We denote by CT (TZ) the Clifford algebra bundle of TZ with respect to gTZT . If U ∈
TV , let UH ∈ THπX

W be the horizontal lift of U , such that πX,∗(U
H) = U . Let {ei},

{fp} be local orthonormal frames of (TX, gTX), (TY, gTY ). Then {fHp,1} ∪ {Tei} is

a local orthonormal frame of (TZ, gTZT ). We define a Clifford algebra isomorphism

GT : CT (TZ)→ C(TZ) (3.7)

by

GT (c(fHp,1)) = c(fHp,1), GT (cT (Tei)) = c(ei). (3.8)

Under this isomorphism, we can consider ((π∗XSY ⊗̂SX)⊗̂E, hπ∗XSY ⊗̂SX ⊗ hE) as a

self-adjoint Hermitian equivariant Clifford module of CT (TZ). So

FZ,T = (W,LZ , E, oZ , T
H
πZ
W, gTZT , hLZ ,∇LZ , hE ,∇E) (3.9)
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is an equivariant geometric family over B and FZ,1 = FZ in (2.37).

If Ind(D(FX)) = 0 ∈ K∗G(V ), from Proposition 3.3 (i), there exists a perturbation

operator AX such that ker(D(FX)+AX) = 0. We extend AX to a pseudodifferential

operator acting on C∞(W, (π∗XSY ⊗̂SX)⊗̂E) the same way as the extension of c(ei)

in Section 2.1, denoted by 1⊗̂AX . From the proof of [34, Lemma 5.3], there exists

T ′ > 1, such that when T > T ′, ker(D(FZ,T ) + 1⊗̂TAX) = 0. So by the homotopy

invariance of the equivariant family index, for any T > 1, we have Ind(D(FZ,T )) = 0.

The proof of Lemma 3.6 is completed.

3.3 Equivariant higher spectral flow

In [20], Dai and Zhang introduced the higher spectral flow for odd dimensional

fibers. In this subsection, we extend the Dai-Zhang higher spectral flow to the

equivariant case and define the equivariant higher spectral flow for even dimensional

fibers inspired by [44, Proposition 4].

Note that a horizontal subbundle on W is simply a splitting of the exact sequence

0→ TZ → TW → π∗TB → 0. (3.10)

As the space of the splitting map is affine, since the G-action preserves (2.10), it

follows that any pair of equivariant horizontal subbundles can be connected by a

smooth path of equivariant horizontal distributions.

Assume that F ,F ′ ∈ F∗G(B) have the same topological structure, i.e., they satisfy

the first three conditions in Definition 2.2. Let r ∈ I, I = [0, 1], parametrize a

smooth path of equivariant horizontal subbundles {THπ,rW}r∈[0,1] such that THπ,0W =

THπ W and THπ,1W = T
′H
π W . Let gTZr , hLZ

r and hEr be the G-invariant metrics on

TZ, LZ and E, depending smoothly on r ∈ I, which coincide with gTZ , hLZ and hE

at r = 0 and with g
′TZ , h

′LZ and h
′E at r = 1. By the same reason, we can choose

G-invariant Hermitian connection ∇LZ
r and ∇Er on LZ and E, such that ∇E0 = ∇E ,

∇E1 = ∇′E , ∇LZ
0 = ∇LZ , ∇LZ

1 = ∇′LZ .

Let B̃ = B × I. We consider the bundle π̃ : W̃ := W × I → B̃ together with

the natural projection Pr : W̃ →W . Then the fiberwise G-action can be naturally

extended to π̃ : W̃ → B̃ such that G acts as identity on I. Thus THπ̃ W̃(r,·) =

R× THπ,rW defines an equivariant horizontal subbundle of TW̃ , and T Z̃ := Pr∗TZ,

L̃Z := Pr∗LZ and Ẽ := Pr∗E are naturally equipped with G-invariant metrics gTZ̃ ,

hL̃Z , hẼ and G-invariant Hermitian connections ∇L̃Z , ∇Ẽ . Let õ = Pr∗o. Then we

obtain equivariant geometric families

Fr = (W,LZ , E, o, T
H
π,rW, g

TZ
r , hLZ

r ,∇LZ
r , hEr ,∇Er ) (3.11)

over B and

F̃ = (W̃ , L̃Z , Ẽ, õ, T
H
π̃ W̃ , gTZ̃ , hL̃Z ,∇L̃Z , hẼ ,∇Ẽ) (3.12)

over B̃ such that F0 = F and F1 = F ′.
If F ∈ F1

G(B) and R, P are two equivariant spectral sections of an equivariant

B-family D such that PR = R, then the cokernel of PbRb : Im(Rb) → Im(Pb) for

b ∈ B forms an equivariant complex vector bundle over B, denoted by [P − R].

Hence for any two equivariant spectral sections P , Q, the difference element [P −Q]

can be defined as an element in K0
G(B) as follows:

[P −Q] := [P −R]− [Q−R] ∈ K0
G(B), (3.13)
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where R is an equivariant spectral section which majors P , Q as in Proposition 3.3

(ii) . From (3.13), we can obtain that if P1, P2, P3 are equivariant spectral sections

of D, then

[P3 − P1] = [P3 − P2] + [P2 − P1] ∈ K0
G(B). (3.14)

Thus the class in (3.13) is independent of the choice of R.

Let F ,F ′ ∈ F1
G(B) which have the same topological structure. Let Fr and F̃ are

equivariant geometric families in (3.11) and (3.12). Now we consider a continuous

family of operators Dr on Fr for r ∈ I such that Dr is an equivariant B-family

on Fr. Assume that Ind(D0) = 0 ∈ K1
G(B). Then the homotopy invariance of the

equivariant family index implies that the equivariant indice of Dr vanish. Let Q0

and Q1 be equivariant spectral sections of D0 and D1 respectively. If we consider the

total family D̃ = {Dr} parametrized by B× I, then there exists a total equivariant

spectral section P̃ . Let Pr be the restriction of P̃ over B × {r}. Thus we have the

natural equivariant extension of the higher spectral flow in [20, Definition 1.5].

Definition 3.7. The equivariant Dai-Zhang higher spectral flow sfG{(D0, Q0),

(D1, Q1)} between the pairs (D0, Q0), (D1, Q1) is an element in K0
G(B) defined by

sfG{(D0, Q0), (D1, Q1)} = [Q1 − P1]− [Q0 − P0] ∈ K0
G(B). (3.15)

From (3.14), we know that this definition is independent of the choice of the total

equivariant spectral section P̃ .

In the following, we define the equivariant higher spectral flow for the even case.

Let F ∈ F0
G(B). Let D be an equivariant B-family on F . We assume that

there exists an equivariant spectral section P with respect to D. Let AP
be the family of self-adjoint equivariant smoothing operators associated with P by

Proposition 3.3 (iii).

Now we use the notation in Example 2.5 d). Let p∗1F ×B×S1 p∗2FL be the odd

equivariant geometric family in Example 2.5 d) with fibers Z×S1. Let τ be the Z2-

grading of the SZ⊗̂E in F . We consider the vector bundle part in p∗1F ×B×S1 p∗2FL
as an ungraded one. Then from Definition 3.1,

DP = (D +AP )⊗ 1 + τ ⊗D(FL) (3.16)

is an equivariant B × S1-family on the odd geometric family p∗1F ×B×S1 p∗2FL and

commutes with the group action.

Since D and AP anti-commute with τ ,

D2
P = ((D +AP )⊗ 1 + τ ⊗D(FL))2 = (D +AP )2 ⊗ 1 + 1⊗D(FL)2 > 0. (3.17)

It implies that DP is invertible. Thus the APS projection P ′ is an equivariant spec-

tral section of DP . Similarly, let Q be another equivariant spectral section of D, we

can construct the equivariant spectral section Q′ of DQ as above. Since p∗1F ×B×S1

p∗2FL ∈ F1
G(B), from Definition 3.7, we could define sfG{(DP , P

′), (DQ, Q
′)} ∈

K0
G(B × S1).

Now we consider Example 2.5 c) more explicitly. It is easy to calculate that for

θ ∈ [0, 1) fixed, the eigenvalues of D(FL) are λk(θ) = 2πk+ 2π(θ− 1/2), k ∈ Z. So

for θ ∈ [0, 1), θ 6= 1/2, we have D(FL)2 > 0. Thus as in (3.17), for any s ∈ [0, 1],

θ 6= 1/2, restricted on B × {θ}, (1 − s)DP + sDQ is invertible. From Definition

3.7, it means that for θ 6= 1/2, sfG{(DP , P
′), (DQ, Q

′)}|B×{θ} = 0 ∈ K0
G(B × {θ}).
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From (2.19), there exists an element in K1
G(B), which we denote by [Q− P ], such

that

j([Q− P ]) = sfG{(DP , P
′), (DQ, Q

′)} ∈ K0
G(B × S1). (3.18)

The idea for this construction comes from [44, Proposition 4]. We note that when

the group G is trivial, this definition is equivalent to that there.

Similarly, if P1, P2, P3 are equivariant spectral sections of D, then

[P3 − P1] = [P3 − P2] + [P2 − P1] ∈ K1
G(B). (3.19)

Now we extend the difference [Q − P ] to the equivariant higher spectral flow.

Let F ,F ′ ∈ F0
G(B), which have the same topological structure, and D0, D1 be two

equivariant B-families on F , F ′ respectively. For i = 0, 1, let Qi be an equivariant

spectral section of Di with corresponding smoothing operators AQi . Let D(r),

r ∈ [0, 1] be a continuous curve of equivariant B-families on Fr such that D(i) =

Di +AQi
, i = 0, 1. Let

Di,Qi = (Di +AQi)⊗ 1 + τ ⊗D(FL). (3.20)

By (3.17), they are invertible. Let Q′i be their APS projections. Let D̃ = {D(r)⊗
1 + τ ⊗D(FL)} parametrized by B × S1 × I. By (3.17), D0,Q0 is invertible. Thus

Ind(D0,Q0
) = 0 ∈ K1

G(B × S1). So Ind(D̃) = 0 ∈ K1
G(B × S1 × I). Let P̃ =

{P (r)}r∈[0,1] be an equivariant spectral section with respect to D̃ such that P (i)

majors Q′i for i = 0, 1. Then from Definition 3.7,

sfG{(D0,Q0
, Q′0), (D1,Q1

, Q′1)} = [Q′1 − P (1)]− [Q′0 − P (0)] ∈ K0
G(B × S1). (3.21)

Furthermore, we could obtain that this equivariant higher spectral flow lies in the

image of j in (2.19). In fact, when restricted on B×{θ}×I for θ 6= 1/2, as in (3.17),

D̃|B×{θ}×I is invertible. For θ 6= 1/2, let {P ′(r)θ}r∈[0,1] be the APS projection of

D̃|B×{θ}×I . Then P ′(0)θ = Q′0|B×{θ} and P ′(1)θ = Q′1|B×{θ}. Since P ′(r)θ and

P (r)|B×{θ}×I are two equivariant spectral sections of D̃|B×{θ}×I and P (i)|B×{θ}
majors Q′i|B×{θ} = P ′(i)θ for i = 0, 1, we see that [P ′(r)θ−P (r)|B×{θ}×I ] forms an

equivariant complex vector bundle overB×{θ}×I. Thus we have ([Q′1−P (1)]−[Q′0−
P (0)])|B×{θ} = 0 ∈ K0

G(B × {θ}). It implies that sfG{(D0,Q0
, Q′0), (D1,Q1

, Q′1)} ∈
Im(j).

Definition 3.8. If F ,F ′ ∈ F0
G(B), the equivariant higher spectral flow sfG{(D0, Q0), (D1, Q1)}

between the pairs (D0, Q0), (D1, Q1) is an element in K1
G(B) defined by

j
(
sfG{(D0, Q0), (D1, Q1)}

)
= sfG{(D0,Q0

, Q′0), (D1,Q1
, Q′1)}. (3.22)

Note that when F = F ′, D0 = D1 = D, the equivariant higher spectral flow

sfG{(D,Q0), (D,Q1)} = [Q1 −Q0].

The following proposition says that any element of equivariant K-group could be

generated by equivariant higher spectral flows. Our proof is constructive.

Proposition 3.9. (i) For any x ∈ K0
G(B), there exist F1,F2 ∈ F1

G(B) and

equivariant spectral sections Pi, Qi with respect to D(Fi) for i = 1, 2, such that

x = [P1 −Q1]− [P2 −Q2].

(ii) For any x ∈ K1
G(B), there exist F ∈ F0

G(B) and equivariant spectral sections

P , Q with respect to D(F), such that x = [P −Q].

Proof. Let (E, hE) be a Hermitian vector bundle and ∇E be a Hermitian con-

nection on (E, hE). Let π : B × S1 → B be the projection onto the first part. Let
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F = (B × S1, π∗E, o, TH(B × S1), gTS
1

, π∗hE , π∗∇E) ∈ F1
G(B), where o, gTS

1

are

the canonical orientation and metric on S1 and TH(B×S1) = TB×S1. Let ∂t be the

generator of TS1. Then D(F) = −
√
−1∂t⊗IdE . We could calculate that the eigen-

values of D(F) are λk = k for k ∈ Z. We denote by Pλ>k the orthogonal projection

onto the union of the eigenspaces of λ > k. Then for any k, Pλ>k is an equivariant

spectral section of D(F). In particular, we have [Pλ>k − Pλ>k+1] = [E] ∈ K0
G(B).

Thus we obtain Proposition 3.9 in the even case.

For any x ∈ K1
G(B), from Lemma 2.4, there exists a finite dimensional complex

unitary representation V of G, such that x can be represented as a G-invariant

unitary element F ∈ C∞(B,End(V )). Let F1 = (B,E+ = E− = B × V ) ∈ F0
G(B),

with fiber Z = pt and trivial metric and connection on E±. Let

A0 =

(
0 I

I 0

)
, A1 =

(
0 F (b)∗

F (b) 0

)
be endomorphisms of V ⊕ V . Let Pi be the orthogonal projection onto the positive

part of the spectrum of Ai for i = 0, 1. It is easy to calculate that for i = 0, 1,

Piτ + τPi = τ . From Definition 3.2, we know that P0 and P1 are equivariant

spectral sections with respect to D(F1) = 0 on F1. Let Di = Ai⊗1+τ ⊗D(FL) on

p∗1F1×B×S1 p∗2FL and P ′i be the APS projections of Di. Let Ds = (1− s)D0 + sD1

for s ∈ [0, 1]. We claim that

sfG{(D0, P
′
0), (D1, P

′
1)} = [W ]− [U ] ∈ K0

G(B × S1), (3.23)

where W and U are bundles constructed above Lemma 2.4. Then from (3.18) and

(3.23), we obtain Proposition 3.9 in the odd case.

We prove the claim (3.23) constructively. Let λb,i be the eigenvalues of F (b) on

V with unitary eigenvectors vb,i. Then λb,i are the eigenvalues of F ∗(b) on V with

the same eigenvectors. Let v±b,i be the corresponding vectors in E±,b. Let vk be the

eigenvector of λk(θ) with respect to D(FL) (see Appendix B). From (3.17), it is

easy to calculate that the nonnegative eigenvalues of Ds are

λs,b,i,k(θ) =

√
λk(θ)2 + (1− 2s)2 + s(1− s)(λb,i + λb,i + 2). (3.24)

Since F is unitary, |λb,i| = 1. So λs,b,i,k(θ) = 0 if and only if k = 0, θ = 1
2 , s = 1

2

and λb,i = −1. From (3.16), we calculate that the eigenfunctions of λs,b,i,1(θ) with

respect to Ds are

u
(1)
s,b,i(θ) = ((sλb,i + 1− s)v+

b,i + (λs,b,i,1(θ)− λ1(θ))v−b,i)⊗ v1,

u
(2)
s,b,i(θ) = ((λs,b,i,−1(θ) + λ−1(θ))v+

b,i + (sλb,i + 1− s)v−b,i)⊗ v−1.
(3.25)

Let

u
(3)
s,b,i(θ) = ((sλb,i + 1− s)v+

b,i + (λs,b,i,0(θ)− λ0(θ))v−b,i)⊗ v0, 0 6 θ 6 1/2,

u
(4)
s,b,i(θ) = ((λs,b,i,0(θ) + λ0(θ))v+

b,i + (sλb,i + 1− s)v−b,i)⊗ v0, 1/2 6 θ 6 1.
(3.26)

Then u
(3)
s,b,i(θ) and u

(4)
s,b,i(θ) are the eigenfunctions of λs,b,i,0(θ) with respect to Ds.

Let

w
(j)
s,b,i(θ) = u

(j)
s,b,i(θ)/‖u

(j)
s,b,i(θ)‖, j = 1, 2, 3, 4. (3.27)

Remark that when θ = 1/2, if s = 1/2 and λb,i = −1, then u
(3)
s,b,i(1/2) = u

(4)
s,b,i(1/2) =

0. In this case, we define

w
(3)
s,b,i(1/2) = lim

θ→1/2−
u

(3)
s,b,i(θ)/‖u

(3)
s,b,i(θ)‖,

w
(4)
s,b,i(1/2) = lim

θ→1/2+
u

(4)
s,b,i(θ)/‖u

(4)
s,b,i(θ)‖.

(3.28)
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Choose χ(θ) ∈ C∞([0, 1/2]) with χ(θ) = 1/2 near θ = 0 and χ(θ) = 0 near

θ = 1/2. Let

w
(5)
s,b,i(θ) = χ(θ)w

(1)
s,b,i(θ) + (1− χ(θ))w

(3)
s,b,i(θ), 0 6 θ 6 1/2,

w
(6)
s,b,i(θ) = χ(1− θ)w(2)

s,b,i(θ) + (1− χ(1− θ))w(4)
s,b,i(θ), 1/2 6 θ 6 1.

(3.29)

Since v1(θ = 0) = v0(θ = 1), v0(θ = 0) = v−1(θ = 1), λ0(0) = λ−1(1) = −π and

λ0(1) = λ1(0) = π, from (3.25)-(3.27), we have w
(1)
s,b,i(0) = w

(3)
s,b,i(1) and w

(2)
s,b,i(1) =

w
(4)
s,b,i(0). By (3.29), we have

w
(5)
s,b,i(0) = w

(6)
s,b,i(1). (3.30)

So
⊕

iC{w
(5)
s,b,i(θ), 0 6 θ < 1/2} and

⊕
iC{w

(6)
s,b,i(θ), 1/2 < θ 6 1} can be connected

as a trivial equivariant complex vector bundle over B × (S1
θ\{1/2})× [0, 1]s. Then

we could glue w
(5)
s,b,i(1/2) and w

(6)
s,b,i(1/2) for any i to get an equivariant complex

vector bundle W̃ over B×S1
θ × [0, 1]s. Let R̃ be the orthogonal projection onto the

sum of W̃ and the eigenspaces with non-positive eigenvalues of D̃ = {Ds}. Then

Q̃ = 1 − R̃ is an equivariant spectral section with respect to D̃. Since KerDs 6= ∅
only when s = 1/2, from (3.21), we have

sfG{(D0, P
′
0), (D1, P

′
1)} = [P ′1 − Q̃|s=1]− [P ′0 − Q̃|s=0]

= [W̃ |s=1]− [W̃ |s=0]. (3.31)

For s = 1, from (3.26), (3.27) and (3.29), we have w
(5)
0,b,i(1/2) = w

(3)
0,b,i(1/2) =

(λ̄b,iv
+
b,i+v

−
b,i)/
√

2 and w
(6)
0,b,i(1/2) = w

(4)
0,b,i(1/2) = (v+

b,i+λb,iv
−
b,i)/
√

2. So w
(6)
0,b,i(1/2) =

λb,i ·w(5)
0,b,i(1/2). From the construction before Lemma 2.4, we have [W̃ |s=1] = [W ].

For s = 0, in the same way, we calculate that w
(6)
1,b,i(1/2) = w

(5)
1,b,i(1/2) = (v+

b,i +

v−b,i)/
√

2. So [W̃ |s=0] = [U ].

Therefore, we obtain the claim (3.23) from (3.31).

The proof of Proposition 3.9 is completed.

Note that the proof of Proposition 3.9 in odd case gives a nontrivial example of

the equivariant higher spectral flow for even dimensional fibers and an example of

the equivariant spectral section without the spectral gap.

Remark 3.10. In non-equivariant case, there is a stronger version of Proposition

3.9 in [44, Proposition 12].

3.4 Equivariant local family index theorem

In this subsection, we use the notation in Section 1.2 to describe the equivariant

local index theorem for F ∈ F∗G(B) when the G-action on B is trivial.

For b ∈ B, let Eb be the set of smooth sections over Zb of SZ⊗̂E|Zb
. As in [8],

we will regard E as an infinite dimensional vector bundle over B.

Let∇TB be the Levi-Civita connection on (B, gTB). Let 0∇TW be the connection

on TW = THW ⊕ TZ defined by

0∇TW = π∗∇TB ⊕∇TZ . (3.32)

Then 0∇TW preserves the metric gTW in (2.13). Set

S = ∇TW − 0∇TW . (3.33)
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If V ∈ TB, let V H ∈ THπ W be its horizontal lift in THπ W so that π∗V
H = V .

For any V ∈ TB, s ∈ C∞(B,E) = C∞(W,SZ⊗̂E), by [10, Proposition 1.4], the

connection

∇E
V s := ∇SZ⊗̂E

V H s− 1

2
〈S(ei)ei, V

H〉 s (3.34)

preserves the L2-product on E.

Let {fp} be a local orthonormal frame of TB and {fp} be its dual. We denote

by ∇E = fp ∧ ∇E
fp

. Let T be the torsion of 0∇TW . Then T (fHp , f
H
q ) ∈ TZ. We

denote by

c(T ) =
1

2
c
(
T (fHp , f

H
q )
)
fp ∧ fq ∧ . (3.35)

By [8, (3.18)], the (rescaled) Bismut superconnection

Bu : C∞(B,Λ(T ∗B)⊗̂E)→ C∞(B,Λ(T ∗B)⊗̂E) (3.36)

is defined by

Bu =
√
uD(F) +∇E − 1

4
√
u
c(T ). (3.37)

Obviously, the Bismut superconnection Bu commutes with the G-action. Moreover,

B2
u is a 2-order elliptic differential operator along the fibers Z (cf. [8, (3.4)]). Let

exp(−B2
u) be the family of heat operators associated with the fiberwise elliptic

operator B2
u. From [6, Theorem 9.50], exp(−B2

u) is a smooth family of smoothing

operators.

If P is a trace class operator acting on Λ(T ∗B)⊗̂End(E) which takes values in

Λ(T ∗B), we use the convention that if ω ∈ Λ(T ∗B),

Trs[ωP ] = ωTrs[P ]. (3.38)

We denote by Trodd/even
s [P ] the part of Trs[P ] which takes values in odd or even

forms. Set

T̃r[P ] =

{
Trs[P ], if dimZ is even;

Trodd
s [P ], if dimZ is odd.

(3.39)

Recall that in this subsection we assume that G acts trivially on B. Take g ∈ G.

Let W g be the fixed point set of g on W . Then W g is a submanifold of W and

π : W g → B is a fiber bundle with compact fibers Zg. Set

chg(E,∇E) = Trs

[
g exp

(√
−1

2π
RE |W g

)]
. (3.40)

Let chg(E) ∈ Heven(W g,C) denote the cohomology class of chg(E,∇E). When the

fiber Z is a point, it descends to the equivariant Chern character map

chg : K0
G(B) −→ Heven(B,C). (3.41)

By (2.19), for x ∈ K1
G(B), j(x) ∈ K0

G(B×S1). The odd equivariant Chern character

map

chg : K1
G(B) −→ Hodd(B,C) (3.42)
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is defined by

chg(x) :=

∫
S1

chg(j(x)). (3.43)

We adopt the sign notation in the integral as in (1.7). This is just the equivariant

version of the odd Chern character in [28] and [53, (1.50)] (see e.g., [36, (3.10)]).

Let N be the normal bundle of W g in W . As G is compact, there is an orthonor-

mal decomposition of real vector bundles over W g,

TZ|W g = TZg ⊕N. (3.44)

Let ∇ be a Euclidean connection on (TZ, gTZ) commuting with the G-action. Then

its restriction on W g preserves the decomposition (3.44). Let ∇TZg

and ∇N be the

corresponding induced connections on TZg and N , with curvatures RTZ
g

and RN

respectively. Set

Âg(TZ,∇) := det1/2

 √
−1

4π RTZ
g

sinh
(√
−1

4π RTZg
)


×
(√
−1

1
2 dimN

det1/2
∣∣∣
N

(
1− g exp

(√
−1

2π
RN
)))−1

. (3.45)

If g acts on L|W g by multiplying by e
√
−1v, we write

chg(L
1/2
Z ,∇L

1/2
Z ) := exp

(√
−1

4π
RL|W g +

√
−1

2
v

)
. (3.46)

We denote by

Tdg(∇,∇LZ ) := Âg(TZ,∇) chg(L
1/2
Z ,∇L

1/2
Z ). (3.47)

Let Tdg(TZ,LZ) ∈ Heven(W g,C) denote the cohomology class of Tdg(∇,∇LZ ).

For α ∈ Ωi(B), set

ψB(α) =


(

1
2π
√
−1

) i
2 · α, if i is even;

1√
π

(
1

2π
√
−1

) i−1
2 · α, if i is odd.

(3.48)

We state the equivariant family local index theorem here (cf. e.g., [8, Theorem

4.17], [11, Theorem 2.10], [34, Theorem 2.2], [35, Theorem 2.2] and [37, Theorem

1.3]). Note that from [38, Lemma 4.1], Zg is naturally oriented.

Theorem 3.11. For any u > 0 and g ∈ G, the differential form ψBT̃r[g exp(−B2
u)] ∈

Ω∗(B,C) is closed and its cohomology class represents chg(Ind(D(F))) ∈ H∗(B,C).

As u→ 0, we have

lim
u→0

ψBT̃r[g exp(−B2
u)] =

∫
Zg

Tdg(∇TZ ,∇LZ ) chg(E,∇E). (3.49)

To simplify the notations, we set

FLIg(F) =

∫
Zg

Tdg(∇TZ ,∇LZ ) chg(E,∇E) ∈ Ω∗(B,C). (3.50)

So Theorem 3.11 says that for F ∈ F
0/1
G (B),

[FLIg(F)] = chg(Ind(D(F))) ∈ Heven/odd(B,C). (3.51)
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When F is the equivariant geometric family in Example 2.5 a), Z = pt, the

equivariant family local index theorem degenerates to the equivariant Chern-Weil

theory:

ψBT̃r[g exp(−B2
u)] = ψB Trs[g exp(−(∇E)2)] = chg(E,∇E). (3.52)

In this case, FLIg(F) = chg(E,∇E) = chg(E+,∇E+)− chg(E−,∇E−).

If α ∈ Λ(T ∗(R+ ×B)),

α = α0 + ds ∧ α1, α0, α1 ∈ Λ(T ∗B). (3.53)

Set

[α]ds = α1. (3.54)

Let F ,F ′ ∈ F∗G(B) which have the same topological structure. By (3.51), we

have [FLIg(F)] = [FLIg(F ′)] ∈ H∗(B,C).

We use the notation in (3.11) and (3.12). By [42, Theorem B.5.4], modulo exact

forms on W g, the equivariant Chern-Simons forms

T̃dg(∇TZ ,∇LZ ,∇
′TZ ,∇

′LZ ) := −
∫ 1

0

[Tdg(∇TZ̃ ,∇L̃Z )]dsds,

c̃hg(∇E ,∇
′E) := −

∫ 1

0

[chg(Ẽ,∇Ẽ)]dsds

(3.55)

depend only on the connections in F and F ′. Moreover,

dW
g

T̃dg(∇TZ ,∇LZ ,∇
′TZ ,∇

′LZ ) = Tdg(∇
′TZ ,∇

′LZ )− Tdg(∇TZ ,∇LZ ),

dW
g

c̃hg(∇E ,∇
′E) = chg(E,∇

′E)− chg(E,∇E).
(3.56)

Set

F̃LIg(F ,F ′) =

∫
Zg

T̃dg(∇TZ ,∇LZ ,∇
′TZ ,∇

′LZ ) chg(E,∇E)

+

∫
Zg

Tdg(∇
′TZ ,∇

′LZ ) c̃hg(∇E ,∇
′E) ∈ Ω∗(B,C)/dΩ∗(B,C). (3.57)

From [6, (1.7)], for σ ∈ Ω∗(W g), using the sign convention in (1.7), we have

dB
∫
Zg

σ =

∫
Zg

dW
g

σ. (3.58)

From (3.56) and (3.58), we have

dB F̃LIg(F ,F ′) = FLIg(F ′)− FLIg(F). (3.59)

3.5 Equivariant eta form

In this subsection, we also assume that G acts trivially on B. We define the equiv-

ariant Bismut-Cheeger eta form with perturbation operator in Definition 3.5.

In this subsection, we assume that there exists a perturbation operator

with respect to D(F) on F . It implies that Ind(D(F)) = 0 ∈ K∗G(B).

Let A be a perturbation operator with respect to D(F). We extend A to 1⊗̂A on

C∞(B, π∗Λ(T ∗B)⊗̂E) as an element of the Z2-graded tensor product of Z2-graded

algebras. In this case,

(α⊗̂1)(1⊗̂A) = (−1)degα(1⊗̂A)(α⊗̂1). (3.60)
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We usually abbreviate 1⊗̂A by A when there is no confusion.

Let χ ∈ C∞(R) be a cut-off function such that

χ(u) =

{
0, if u < 1;

1, if u > 2.
(3.61)

Set

B′u = Bu +
√
uχ(
√
u)A. (3.62)

Since χ(
√
u) = 0 if u ∈ (0, 1), by (3.49) and (3.50),

lim
u→0

ψBT̃r[g exp(−(B′u)2)] = FLIg(F) ∈ Ω∗(B,C). (3.63)

Since χ(
√
u) = 1 if u ∈ (2,+∞), from [6, Theorem 9.19], we have

lim
u→+∞

ψBT̃r
[
g exp

(
−(B′u)2

)]
= 0. (3.64)

Definition 3.12. For any g ∈ G, modulo exact forms on B, the equivariant eta

form with perturbation operator A is defined by

η̃g(F , A) = −
∫ ∞

0

{
ψR×B T̃r

[
g exp

(
−
(
B′u + du ∧ ∂

∂u

)2
)]}du

du

∈ Ω∗(B,C)/dΩ∗(B,C). (3.65)

The regularities of the integral in the right hand side of (3.65) are proved in [34,

Section 2.4]. As in [34, (2.81)], we have

dη̃g(F , A) = FLIg(F). (3.66)

As in [34, (2.95)], the value of η̃g(F , A) in Ω∗(B,C)/dΩ∗(B,C) is independent

of the choice of the cut-off function. Similarly, if AP and A′P are two smooth-

ing operators associated with the same equivariant spectral section P , we have

η̃g(F , AP ) = η̃g(F , A′P ) ∈ Ω∗(B,C)/dΩ∗(B,C). In this case, we often simply de-

note it by η̃g(F , P ).

If the fiber Z is connected, we could calculate the equivariant eta form explicitly:

η̃g(F , A) =



∫ ∞
0

1√
π
ψB Treven

s

[
g
∂B′u
∂u

exp(−(B′u)2)

]
du ∈ Ω∗(B,C)/dΩ∗(B,C),

if F is odd;∫ ∞
0

1

2
√
π
√
−1

ψB Trs

[
g
∂B′u
∂u

exp(−(B′u)2)

]
du ∈ Ω∗(B,C)/dΩ∗(B,C),

if F is even and dimZ > 0.∫ ∞
0

√
−1

2π
Trs

[
g
∂∇Eu
∂u

exp

(
− (∇Eu )2

2π
√
−1

)]
du ∈ Ω∗(B,C)/dΩ∗(B,C),

if dimZ = 0,

(3.67)

where ∇Eu = ∇E +
√
uχ(
√
u)A.

When dimZ = 0, the equivariant geometric family degenerates to the case of

Example 2.5 a). Then there exists a complex vector bundle E′ such that E+⊕E′ '
E− ⊕ E′ as complex vector bundles. As in [42, Definition B.5.3], from (3.52) and
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(3.66), the equivariant eta form in this case is just the equivariant transgression

between chg(E+ ⊕ E′,∇E+⊕E′) and chg(E− ⊕ E′,∇E−⊕E
′
).

Furthermore, by changing the variable (see also [34, Remark 2.4]), we could get

another form of equivariant eta form:

η̃g(F , A) = −
∫ ∞

0

{
ψR×B T̃r

[
g exp

(
−
(
B′u2 + du ∧ ∂

∂u

)2
)]}du

du. (3.68)

Let (Z ′, gTZ
′
) be an even dimensional Spinc manifold and (E′, hE

′
,∇E′) be a

Z2-graded Hermitian vector bundle over Z ′ with a Hermitian connection ∇E′ . Let

pr2 : B × Z ′ → Z ′ be the projection onto the second part. Then all the bundles

and geometric data above could be pulled back on B × Z ′. Thus the fiber bundle

B × Z ′ → B and the structures pulled back by pr2 form a geometric family F ′
with fibers Z ′. In this case, Ind(D(F ′)) is a trivial virtual complex vector bundle

over B. It could also be regarded as a locally constant function on B with values

in Z. We assume that the group action on F ′ is trivial. For F ∈ F∗G(B), let A be

a perturbation operator with respect to D(F) on F . Let τ ′ be the Z2-grading of

SZ′⊗̂E′. As in (2.7), we define

A⊗̂1 := A⊗ τ ′ (3.69)

on F ×B F ′. By (2.7), we have

(D(F ×B F ′) +A⊗̂1)2 = (D(F) +A)2⊗̂1 + 1⊗̂D(F ′)2 > 0. (3.70)

Thus A⊗̂1 is a perturbation operator with respect to D(F ×B F ′).
Lemma 3.13. For g ∈ G, we have

η̃g(F ×B F ′, A⊗̂1) = η̃g(F , A) · Ind(D(F ′)) ∈ Ω∗(B,C)/dΩ∗(B,C). (3.71)

Here we consider Ind(D(F ′)) as a locally constant function on B with values in Z.

Proof. We denote by Tr |F the trace operator associated with F . Then from

(3.68),

η̃g(F ×B F ′, A⊗̂1)

= −
∫ ∞

0

{
ψR×B T̃r|F×BF ′

[
g exp

(
−
(
B′u2⊗̂1 + 1⊗̂uD(F ′) + du ∧ ∂

∂u

)2
)]}du

du

=

∫ ∞
0

{
ψR×B T̃r|F×BF ′

[
g(1⊗̂D(F ′)) exp

(
−
(
B′u2⊗̂1

)2 − (1⊗̂uD(F ′)
)2)]}

du

−
∫ ∞

0

{
ψR×B T̃r|F×BF ′

[
g exp

(
−
(
B′u2⊗̂1 + du ∧ ∂

∂u

)2

− 1⊗̂u2D(F ′)2

)]}du
du

=

∫ ∞
0

{
ψR×B T̃r|F

[
g exp

(
− (B′u2)

2
)]
· Trs |F ′

[
D(F ′) exp

(
−u2D(F ′)2

)]}
du

−
∫ ∞

0

{
ψR×B T̃r|F

[
g exp

(
−
(
Bu2 + du ∧ ∂

∂u

)2
)]
· Trs |F ′

[
exp

(
−u2D(F ′)2

)]}du
du.

(3.72)

From the definition of F ′ and the local index theorem, as functions on B, we

have

Trs |F ′
[
D(F ′) exp

(
−
(
u2D(F ′)2

))]
= 0,

Trs |F ′
[
exp

(
−u2D(F ′)2

)]
= Ind(D(F ′)).

(3.73)
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So we get η̃g(F ×B F ′, A⊗̂1) = η̃g(F , A) · Ind(D(F ′)).
The proof of Lemma 3.13 is completed.

3.6 Anomaly formula for odd equivariant geometric families

In this subsection, we will study the anomaly formula of the equivariant eta forms

for two odd equivariant geometric families F and F ′ with the same topological

structure. In this subsection, we also assume that G acts on B trivially.

Assume that F ∈ F1
G(B). Let A be a family of bounded pseudodifferential

operator on F such that D(F) + A is an equivariant B-family. Let P , Q be two

equivariant spectral sections with respect to D(F) +A. Let AP , AQ be smoothing

operators associated with P , Q. Then A+AP and A+AQ are perturbation operators

of D(F). In this case, by (3.66), the difference of η̃g(F , A+AP ) and η̃g(F , A+AQ)

is closed. Furthermore, we have the following lemma.

Lemma 3.14. (Compare with [43, Proposition 17]) For any g ∈ G, modulo exact

forms on B, we have

η̃g(F , A+AP )− η̃g(F , A+AQ) = chg([P −Q]) ∈ Heven(B,C). (3.74)

Proof. Note that A, AP , AQ preserve the Z2-grading of E and if we reverse the

orientation of the fibers, the eta form is changed to its minus. From (3.14) and the

orientation reversing trick in the proof of Proposition 3.3 (i), we only need to prove

the lemma when Q majorizes P and E− = 0 in F .

Let F̃ be the equivariant geometric family defined in (3.12) such that Fr = F
for any r ∈ [0, 1]. Let B̃u be the Bismut superconnection associated with F̃ . We

choose s > 0 large enough such that P and Q satisfy (3.1) for f(b) ≡ s. We

choose equivariant spectral sections R′ and R′′ as in (3.3). Since the eta form

is independent of the smoothing operators with respect to the same equivariant

spectral section, we may choose the smoothing operators AP , AQ as in (3.3). Set

Ar := A+ rAQ + (1− r)AP . Let

B̃′u|(u,r) := B̃u|(u,r) +
√
uχ(
√
u)Ar (3.75)

as in (3.62). We simply denote by

Dr := D(F) +Ar, ∇̃ := ∇E + dr ∧ ∂

∂r
. (3.76)

Then from (3.37), when u > 2, we have

(
B̃′u2

)2

= u2D2
r + u[Dr, ∇̃] + ∇̃2 +

1

4
[Dr, c(T )]

+
1

4u
[∇̃, c(T )] +

1

16u2
c(T )2. (3.77)

For a family of bounded operators Au, u ∈ R+, we write Au = O(u−k) as

u → +∞ if there exists C > 0 such that if u is large enough, the norm of Au is

dominated by C/uk.

Let Π be the orthogonal projection onto [P −Q], an equivariant complex vector

bundle over B̃. Let

Eu = Π ◦
(
B̃′u2

)2

◦Π, Fu = Π ◦
(
B̃′u2

)2

◦Π⊥,

Gu = Π⊥ ◦
(
B̃′u2

)2

◦Π, Hu = Π⊥ ◦
(
B̃′u2

)2

◦Π⊥.

(3.78)
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From (3.3), since Π commutes with P,Q,R′, R′′, ΠQ = ΠR′ = 0 and ΠR′′ = ΠP =

Π, we have

Π◦Dr ◦Π = rΠ◦
(
R′(D(F)+A)R′+sQR′′(I−R′)+(I−R′′)(D(F)+A)(I−R′′)

− s(I −Q)R′′(I −R′)
)
◦Π + (1− r) Π ◦

(
R′(D(F) +A)R′ + sPR′′(I −R′)

+ (I −R′′)(D(F) +A)(I −R′′)− s(I − P )R′′(I −R′)
)
◦Π

= s(1− 2r)Π. (3.79)

Since Dr preserves the splitting Range(Π)⊕ Range(Π⊥),

Π ◦ [Dr, ∇̃] ◦Π = [Π ◦Dr ◦Π, Π ◦ ∇̃ ◦Π]

= dr ∧ ∂

∂r
(Π ◦Dr ◦Π) = −2sdr ∧ ◦Π. (3.80)

Similarly, we have Π ◦ [Dr, c(T )] ◦Π = 0 and

Π ◦ ∇̃2 ◦Π = Π ◦ (∇E)2 ◦Π. (3.81)

Let

E′ = u2s2(1− 2r)2Π− 2usdr ∧ ◦Π + Π ◦ (∇E)2 ◦Π, F ′ = Π⊥ ◦ [Dr, ∇̃] ◦Π,

G′ = Π ◦ [Dr, ∇̃] ◦Π⊥, H ′ = Π⊥ ◦D2
r ◦Π⊥.

(3.82)

From (3.77)-(3.82), when u→ +∞,

Eu = E′ +O(u−1), Fu = uF ′ + F ′′ +O(1),

Gu = uG′ +G′′ +O(1), Hu = u2H ′ + uH ′′ +H ′′′ +O(1),
(3.83)

where F ′′, G′′, H ′′, H ′′′ are first order differential operators along the fiber. Let

∇Π := Π ◦ ∇E ◦Π. (3.84)

We have

E′ − F ′H ′−1G′ = u2s2(1− 2r)2Π− 2usdr ∧ ◦Π + (∇Π)2. (3.85)

Following the same way as the proof of [34, Theorem 5.13], we can obtain

exp

(
−
(
B̃′u2

)2
)

= Π ◦ exp(−(E′ − F ′H ′−1G′)) ◦Π +O(u−1). (3.86)

Thus we have[
exp

(
−
(
B̃′u2

)2
)]dr

= 2use−u
2s2(1−2r)2Π ◦ exp

(
−
(
∇Π
)2) ◦Π +O(u−1). (3.87)

Set

r1(u, r) =

{
ψB Trodd

s

[
g exp

(
−
(
B̃′u2

)2
)]}dr∣∣∣∣∣

(u,r)

.

From [34, (2.95)], modulo exact forms on B, we have

η̃g(F , A+AP )− η̃g(F , A+AQ) = lim
u→+∞

∫ 1

0

r1(u, r)dr

=
1√
π

lim
u→+∞

∫ 1

0

2use−u
2s2(1−2r)2dr · ψB Tr[g exp(−(∇Π)2)]

=
1√
π

lim
u→+∞

∫ us

−us
e−x

2

dx · chg([P −Q]) = chg([P −Q]). (3.88)

The proof of Lemma 3.14 is completed.
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Using Lemma 3.14, we obtain the anomaly formula in odd case as follows.

Proposition 3.15. (Compare with [20, Theorem 0.1]) Let F , F ′ ∈ F1
G(B) which

have the same topological structure. Let A, A′ be perturbation operators with respect

to D(F), D(F ′) and P , P ′ be APS projections with respect to D(F)+A, D(F ′)+A′

respectively. For any g ∈ G, modulo exact forms on B, we have

η̃g(F ′, A′)− η̃g(F , A) = F̃LIg(F ,F ′)
+ chg (sfG{(D(F) +A,P ), (D(F ′) +A′, P ′)}) . (3.89)

Proof. Let F̃ be the equivariant geometric family defined in (3.12). Let Dr =

D(Fr) + (1 − r)A + rA′ and D̃ = {Dr}r∈[0,1] on F̃ . Since the equivariant family

index of D(F) vanishes, so are Dr and D̃. If we consider the total family F̃ , from

Proposition 3.3(i), there exists a total equivariant spectral section P̃ of D̃. Let Pr
be the restriction of P̃ over {r} × B. Then it is an equivariant spectral section of

Dr. Let APr be an equivariant smoothing operator associated with Pr. Following

the proof of [34, Theorem 2.7], we can get

η̃g(F ′, A′ +AP1
)− η̃g(F , A+AP0

) = F̃LIg(F ,F ′). (3.90)

Thus Proposition 3.15 follows from Lemma 3.14, (3.15) and (3.90).

The proof of Proposition 3.15 is completed.

3.7 Functoriality of equivariant eta forms

In this subsection, we will study the functoriality of the equivariant eta forms and

use it to prove the anomaly formula of equivariant eta forms for even equivariant

geometric families. In this subsection, we use the notation in Section 2.4 and assume

that G acts trivially on B.

Recall that in (2.34), TZ = THπX
Z ⊕ TX. Let ∇TY,TX be the connection on TZ

defined by

∇TY,TX = π∗X∇TY ⊕∇TX (3.91)

as in (3.32).

Let ∇, ∇′ be Euclidean connections on (TZ, gTZ) and ∇LZ , ∇′LZ be Hermitian

connections on (LZ , h
LZ ). Similarly as (3.50), we define

FLIg(∇,∇LZ ) :=

∫
Zg

Tdg(∇,∇LZ ) chg(E,∇E). (3.92)

As in (3.55) and (3.56), there exists a well-defined equivariant Chern-Simons form

T̃dg(∇,∇LZ ,∇′,∇′LZ ) ∈ Ω∗(W g,C)/dΩ∗(W g,C) such that

dW
g

T̃dg(∇,∇LZ ,∇′,∇
′LZ ) = Tdg(∇′,∇

′LZ )− Tdg(∇,∇LZ ). (3.93)

Set

F̃LIg(∇,∇LZ ,∇′,∇
′LZ ) :=

∫
Zg

T̃dg(∇,∇LZ ,∇′,∇
′LZ ) chg(E,∇E). (3.94)

From (3.58) and (3.93), we have

dB F̃LIg(∇,∇LZ ,∇′,∇
′LZ ) = FLIg(∇′,∇

′LZ )− FLIg(∇,∇LZ ). (3.95)

From the proof of Lemma 3.6, we obtain that if AX is a perturbation operator

of D(FX), there exists T ′ > 0 such that when T > T ′, 1⊗̂TAX is a perturbation

operator of D(FZ,T ).
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Note that when AX is a family of smoothing operators along the fibers X, 1⊗̂AX
is only bounded, not a family of smoothing operators along the fibers Z. This is the

reason for us to define the eta form for the bounded perturbation operator instead

of the smoothing operator in [14,16,20,43].

The following technical lemma is a modification of the main result in [34]. The

proof of it will be left to the next subsection.

Lemma 3.16. Modulo exact forms on B, for T > T ′, we have

η̃g(FZ,T , 1⊗̂TAX) =

∫
Y g

Tdg(∇TY ,∇LY ) η̃g(FX , AX)

+ F̃LIg
(
∇TY,TX ,∇LZ ,∇TZT ,∇LZ

)
. (3.96)

Here ∇TZT is the connection associated with (THπZ
W, gTZT ) as in (2.14).

Using Lemma 3.16, we could extend the anomaly formula Proposition 3.15 to the

general case.

Theorem 3.17. Let F , F ′ ∈ F∗G(B) which have the same topological structure.

Let A, A′ be perturbation operators with respect to D(F), D(F ′) and P , P ′ be the

APS projections with respect to D(F) +A, D(F ′) +A′ respectively. For any g ∈ G,

modulo exact forms on B, we have

η̃g(F ′, A′)− η̃g(F , A) = F̃LIg(F ,F ′)
+ chg (sfG{(D(F) +A,P ), (D(F ′) +A′, P ′)}) . (3.97)

Proof. We only need to prove the even case.

Let L → S1 × S1 be the Hermitian line bundle in Example 2.5 c) with ∇L
constructed there. We use the notation in Example 2.5 c). Let p : B × S1 × S1 →
S1×S1 be the natural projection. Then all bundles and geometric data in FL could

be pulled back on B × S1 × S1. Thus the fiber bundle B × S1 × S1 → B and the

structures pulled back by p form an even geometric family F0 over B. In this case,

Ind(D(F0)) = 1. Here we consider Ind(D(F0)) as a locally constant function on B

as in Lemma 3.13. The key observation is

p1!(p∗1F ×B×S1 p∗2FL) = F ×B F0. (3.98)

Recall that A⊗̂1F0 is defined in (3.69). Since A⊗̂1F0 is a perturbation operator

of D(F ×B F0), we could choose T ′ = 1 in Lemma 3.16. By Lemmas 3.13 and 3.16,

we have

η̃g(F , A) = η̃g(F ×B F0, A⊗̂1F0
)

=

∫
S1

η̃g(p
∗
1F ×B×S1 p∗2FL, A⊗̂1FL)

− F̃LIg

(
∇T (Z×S1),∇LZ ,∇TZ,TS

1

,∇LZ

)
. (3.99)

As in (3.16), D(p∗1F ×B×S1 p∗2FL) = D(F) ⊗ 1 + τ ⊗DL. By Proposition 3.15,

the construction of the equivariant higher spectral flow for even case and (3.43), we

have

η̃g(F ′, A′)− η̃g(F , A)

=

∫
S1

{
η̃g(p

∗
1F ′ ×B×S1 p∗2FL, A′⊗̂1FL)− η̃g(p∗1F ×B×S1 p∗2FL, A⊗̂1FL)

}
+

∫
S1

∫
Zg

{
T̃dg

(
∇T (S1×Z′),∇LZ′ ,∇TS

1,TZ′ ,∇LZ′
)

chg(E
′,∇E

′
)
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− T̃dg

(
∇T (S1×Z),∇LZ ,∇TS

1,TZ ,∇LZ

)
chg(E,∇E)

}
= F̃LIg(F ,F ′) +

∫
S1

chg
(
sfG{(D(p∗1F ×B×S1 p∗2FL) +A⊗̂1, P0),

(D(p∗1F ′ ×B×S1 p∗2FL) +A′⊗̂1, P ′0)}
)

= F̃LIg(F ,F ′) + chg (sfG{(D(F) +A,P ), (D(F ′) +A′, P ′)}) , (3.100)

where P0, P ′0 are the associated APS projections respectively. Note that in order to

adapt the sign convention (1.7), the sign in the beginning of the fifth line of (3.100)

is alternated.

The proof of Theorem 3.17 is completed.

Using Theorem 3.17, we could write Lemma 3.16 as a more elegant form.

Theorem 3.18. Let AZ and AX be perturbation operators with respect to D(FZ)

and D(FX). Then modulo exact forms on B, for T > 1 large enough, we have

η̃g(FZ , AZ) =

∫
Y g

Tdg(∇TY ,∇LY ) η̃g(FX , AX)+F̃LIg
(
∇TY,TX ,∇LZ ,∇TZ ,∇LZ

)
+ chg(sfG{(D(FZ,T ) + 1⊗̂TAX , P ), (D(FZ) +AZ , P

′)}), (3.101)

where P and P ′ are the associated APS projections respectively.

From Theorems 3.17 and 3.18, we could extend Lemma 3.13 to the general case.

Theorem 3.19. (Compare with [16, (24)]) Let F ,F ′ ∈ F∗G(B). Let A and A′ be

the perturbation operators with respect to D(F) and D(F ×B F ′). Then there exists

x ∈ K∗G(B), such that

η̃g(F ×B F ′, A′) = η̃g(F , A) FLIg(F ′) + chg(x). (3.102)

Proof. Here we use a trick in [16] similarly as (3.98). Let π′ : W ′ → B be

the submersion in F ′. We could obtain a pullback family π
′∗F by choosing a

horizontal subbundle TH(π′∗W ) such that dπ′(TH(π′∗W )) ⊂ THW . Let π
′∗F ⊗E′

be the equivariant geometric family which is obtained from π
′∗F by twisting with

P ∗W ′(SZ′ ⊗ E′), where PW ′ : W ×B W ′ →W ′. Then we have

F ×B F ′ ' π′!(π
′∗F ⊗ E′). (3.103)

Since the fibers of π
′∗W → B is Z ′ × Z, the fiberwise connection ∇T (Z′×Z) =

∇TZ′,TZ . So Theorem 3.19 follows from Theorem 3.18.

The proof of Theorem 3.19 is completed.

Remark 3.20. When the parameter space B is a point and dimZ is odd, letting

A = PkerD be the orthogonal projection onto the kernel of D(F), which we simply

denote by D, we have

η̃g(F , A) =
1√
π

∫ +∞

0

Tr
[
g(D + (uχ(u))′PkerD) exp(−(uD + uχ(u)PkerD)2)

]
du

=
1√
π

∫ +∞

0

Tr
[
g(D + (uχ(u))′PkerD) exp(−u2D − u2χ(u)2PkerD)

]
du

=
1√
π

∫ +∞

0

Tr
[
gD exp(−u2D2)

]
du

+
1√
π

∫ +∞

0

Tr
[
g(uχ(u))′PkerD exp(−u2χ(u)2PkerD)

]
du
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=
1

2
√
π

∫ +∞

0

u−1/2 Tr[gD exp(−uD2)]du+
1√
π

∫ +∞

0

exp(−u2)du · Tr[gPkerD]

=
1

2
√
π

∫ +∞

0

u−1/2 Tr[gD exp(−uD2)]du+
1

2
Tr[gPkerD], (3.104)

which is just the usual equivariant reduced eta invariant in [22]. So Theorem

3.18 naturally degenerates to the case of equivariant reduced eta invariants and the

equivariant higher spectral flow degenerates to the canonical equivariant spectral

flow [24].

3.8 Proof of Lemma 3.16

The proof of Lemma 3.16 is almost the same as the proof of [34, Theorem 3.4].

Observe that Assumptions 3.1 and 3.3 in [34] naturally hold in our case.

Let T ′ > 1 be the constant taking in the proof of Lemma 3.6. For T > T ′,

let Bu,T be the Bismut superconnection associated with the equivariant geometric

family FZ,T . Let

B̂|(T,u) = Bu2,T + uTχ(uT )(1⊗̂AX) + dT ∧ ∂

∂T
+ du ∧ ∂

∂u
. (3.105)

We define βg = du ∧ βug + dT ∧ βTg to be the part of ψBT̃r[g exp(−B̂2)] of degree

one with respect to the coordinates (T, u), with functions βug , βTg : R+,T × R+,u →
Ω∗(B,C).

Comparing with [34, Proposition 4.2], there exists a smooth family αg : R+,T ×
R+,u → Ω∗(B,C) such that(

du ∧ ∂

∂u
+ dT ∧ ∂

∂T

)
βg = dT ∧ du ∧ dBαg. (3.106)

Take ε,A, T0, 0 < ε 6 1 6 A <∞, T ′ 6 T0 <∞. Let Γ = Γε,A,T0
be the oriented

contour in R+,T × R+,u.

0

U

u

T

ε

A

T ′ T0

Γ1

Γ4

Γ2

Γ3

Γ

The contour Γ is made of four oriented pieces Γ1, · · · ,Γ4 indicated in the above

picture. For 1 6 k 6 4, set I0
k =

∫
Γk
βg. Then by Stocks’ formula and (3.106),

4∑
k=1

I0
k =

∫
∂U
βg =

∫
U

(
du ∧ ∂

∂u
+ dT ∧ ∂

∂T

)
βg = dB

(∫
U
αgdT ∧ du

)
. (3.107)

The following theorems are the analogues of [34, Theorems 4.3-4.6]. Note that

Theorem 3.22 is the analogue of [34, (6.8)]. We will sketch the proofs in the next

subsection.
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Theorem 3.21. i) For any u > 0, we have

lim
T→∞

βug (T, u) = 0. (3.108)

ii) For 0 < u1 < u2 fixed, there exists C > 0 such that, for u ∈ [u1, u2], T > 1,

we have

|βug (T, u)| 6 C. (3.109)

iii) We have the following identity:

lim
T→+∞

∫ ∞
1

βug (T, u)du = 0. (3.110)

Theorem 3.22. For u0 > 0 fixed, there exist C,C ′ > 0, T0 > 1, such that for

u > u0, T > T0, ∣∣βTg (T, u)
∣∣ 6 C exp(−C ′u2). (3.111)

We know that Âg(TZ,∇) only depends on g ∈ G and R := ∇2. So we also denote

it by Âg(R). Let RTZT := (∇TZT )2. Set

γΩ(T ) = − ∂

∂b

∣∣∣∣
b=0

Âg

(
RTZT + b

∂∇TZT
∂T

)
. (3.112)

By a standard argument in Chern-Weil theory, we know that

∂

∂T
˜̂
Ag(TZ,∇TZT ′ ,∇TZT ) = −γΩ(T ). (3.113)

Theorem 3.23. When T → +∞, we have γΩ(T ) = O(T−2). Moreover, modulo

exact forms on W g, we have

˜̂
Ag(TZ,∇TZT ′ ,∇TY,TX) = −

∫ +∞

T ′
γΩ(T )dT. (3.114)

Let BX,T be the Bismut superconnection associated with the equivariant geo-

metric family FX,T , which is the same as FX except for replacing gTX to T−2gTX .

Set

γ1(T ) =
{
ψV g T̃r|V g

[
g exp

(
−
(
BX,T 2 |V g

+T χ(T )AX |V g + dT ∧ ∂

∂T

)2
)]}dT

. (3.115)

Then from (3.68),

η̃g(FX , AX) = −
∫ ∞

0

γ1(T )dT. (3.116)

Theorem 3.24. i) For any u > 0, there exist C > 0 and δ > 0 such that, for

T > T ′, we have

|βTg (T, u)| 6 C

T 1+δ
. (3.117)

ii) For any T > 0, we have

lim
ε→0

ε−1βTg (Tε−1, ε) =

∫
Y g

Tdg(∇TY ,∇LY ) γ1(T ). (3.118)
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iii) There exists C > 0 such that for ε ∈ (0, 1/T ′], εT ′ 6 T 6 1,

ε−1

∣∣∣∣βTg (Tε−1, ε) +

∫
Zg

γΩ(Tε−1) chg(L
1/2
Y ,∇L

1/2
Y ) chg(E,∇E)

∣∣∣∣ 6 C. (3.119)

Note that as in (3.46), chg(L
1/2
Y ,∇L

1/2
Y ) is well-defined even if L

1/2
Y does not exist.

iv) There exist δ ∈ (0, 1], C > 0 such that, for ε ∈ (0, 1], T > 1,

ε−1|βTg (Tε−1, ε)| 6 C

T 1+δ
. (3.120)

Now we prove Lemma 3.16 using the theorems above.

By (3.107), we know that

∫ A

ε

βug (T0, u)du−
∫ T0

T ′
βTg (T,A)dT −

∫ A

ε

βug (T ′, u)du

+

∫ T0

T ′
βTg (T, ε)dT =

4∑
k=0

I0
k (3.121)

is an exact form. We take the limits A → +∞, T0 → +∞ and then ε → 0 in the

indicated order. Let Ikj , j = 1, 2, 3, 4, k = 1, 2, 3, denote the value of the part Ij
after the kth limit.

Since the definition of the equivariant eta form does not depend on the cut-off

function, from (3.65), we obtain that modulo exact forms on B,

I3
3 = η̃g(FZ,T ′ , 1⊗̂T ′AX). (3.122)

Furthermore, by Theorem 3.22, we get

I3
2 = I2

2 = 0. (3.123)

From Theorem 3.21, we have

I3
1 = 0. (3.124)

Finally, using Theorem 3.24, we get

I3
4 = −

∫
Y g

Tdg(∇TY ,∇LY ) η̃g(FX , AX)

+ F̃LIg
(
∇TZT ′ ,∇LZ ,∇TY,TX ,∇LZ

)
(3.125)

as follows: We write∫ +∞

T ′
βTg (T, ε)dT =

∫ +∞

εT ′
ε−1βTg (Tε−1, ε)dT. (3.126)

Convergence of the integrals above is guaranteed by (3.117). Using Theorem 3.23

and (3.118)-(3.120), we get

lim
ε→0

∫ +∞

1

ε−1βTg (Tε−1, ε)dT =

∫
Y g

Tdg(∇TY ,∇LY )

∫ +∞

1

γ1(T )dT (3.127)

and

lim
ε→0

∫ 1

εT ′
ε−1

[
βTg (Tε−1, ε)dT +

∫
Zg

γΩ(Tε−1) chg(L
1/2
Y ,∇L

1/2
Y ) chg(E,∇E)

]
dT
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=

∫
Y g

Tdg(∇TY ,∇LY )

∫ 1

0

γ1(T )dT. (3.128)

The remaining part of the integral yields by (3.119)

lim
ε→0

∫ 1

εT ′
ε−1

∫
Zg

γΩ(Tε−1) chg(L
1/2
Y ,∇L

1/2
Y ) chg(E,∇E)dT

=

∫
Zg

∫ +∞

T ′
γΩ(T ) chg(L

1/2
Y ,∇L

1/2
Y ) chg(E,∇E)dT

= F̃LIg
(
∇TY,TX ,∇LZ ,∇TZT ′ ,∇LZ

)
. (3.129)

These four equations for I3
k , k = 1, 2, 3, 4, (3.107) and (3.121) imply that

lim
ε→0

lim
T0→+∞

lim
A→+∞

dB

(∫ T0

T ′

∫ A

ε

αgdT ∧ du

)
(3.130)

exists and equal to

Θ := η̃g(FZ,T ′ , 1⊗̂TAX)−
∫
Y g

Tdg(∇TY ,∇LY ) η̃g(FX , AX)

− F̃LIg
(
∇TY,TX ,∇LZ ,∇TZT ′ ,∇LZ

)
∈ Ω∗(B). (3.131)

Since the convergences for A → +∞, T0 → +∞ and ε → 0 are uniform on

compact manifold B, they commute with the integration on B. So for any closed

form θ ∈ Ω∗(B),
∫
B

Θ ∧ θ = 0. By [23, §22, Theorem 17’], there exists a current T
such that Θ = dT . Since Θ ∈ Ω∗(B) is smooth, we have Θ ∈ dΩ∗(B). So the right

hand side of (3.131) is an exact form on B. Therefore we obtain Lemma 3.16.

3.9 Proofs of Theorems 3.21-3.24

Since ker(D(FX)+AX) = 0, the proofs of Theorems 3.21-3.24 in our case are much

easier than those in [34]. We only need to replace DX and DZ
T somewhere in [34] by

D(FX)+AX and D(FZ,T )+1⊗̂TAX and take care with the local index computation

in the proof of Theorem 3.24 ii). In this subsection, we only sketch the local index

part here.

Set (cf. [34, (7.1)])

B′ε,T/ε = (Bε2,T/ε + Tχ(T )AX)2

+ ε−1dT ∧
∂(Bε2,T ′ + εT ′χ(εT ′)AX)

∂T ′

∣∣∣∣
T ′=Tε−1

. (3.132)

By the definition of βTg (T, ε), we have

ε−1βTg (T/ε, ε) =
{
ψBT̃r[g exp(−B′ε,T/ε)]

}dT
. (3.133)

Let SX be the tensor in (3.33) with respect to πX . Let {ei}, {fp} and {gα} be

the local orthonormal frames of TX, TY and TB and {fHp,1} and {gHα,3} be the

corresponding horizontal lifts. Precisely, by (3.37), we have

ε−1 ∂(Bε2,T ′ + εT ′χ(εT ′)AX)

∂T ′

∣∣∣∣
T ′=Tε−1

= DX + χ(T )AX + Tχ′(T )AX

− 1

8T 2

(
〈ε2[fHp,1, f

H
q,1], ei〉c(ei)c(fHp,1)c(fHq,1)
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+ 4ε〈SX(gHα,3)ei, f
H
p,1〉c(ei)c(fHp,1)gα3 ∧+〈[gHα,3, gHβ,3], ei〉c(ei)gα ∧ gβ ∧

)
. (3.134)

As in (3.132), we set

B′′T 2 |V g = (BX,T 2 |V g + Tχ(T )AX)2 + dT ∧
∂(BX,T 2 + Tχ(T )AX)

∂T

∣∣∣∣
V g

. (3.135)

Then by (3.115), we have

γ1(T ) =
{
ψV g T̃r[g exp(−B′′T 2 |V g )]

}dT
. (3.136)

As the same process in [34, Section 7], we could localize the problem near π−1
X (V g)

and define the operator B′ε,T/ε on a neighborhood of {0} ×Xy0 in Ty0Y ×Xy0 .

Let distV , distW be the distance functions on V , W associated with gTV , gTW .

Let InjV , InjW be the injective radius of V , W . In the sequel, we assume that

given 0 < α < α0 < inf{InjV , InjW } are chosen small enough so that if y ∈ V ,

distV (g−1y, y) 6 α, then distV (y, V g) 6 1
4α0, and if z ∈ W , distW (g−1z, z) 6 α,

then distW (z,W g) 6 1
4α0. Let ρ : Ty0Y → [0, 1] be a smooth function such that

ρ(U) =

{
1, |U | 6 α0/4;

0, |U | > α0/2.
(3.137)

Let ∆TY be the ordinary Laplacian operator on Ty0Y . Let EZ,y0 := C∞(Xy0 ,SZ⊗̂E|Xy0
).

Set

L1
ε,T = (1− ρ2(U))(−ε2∆TY + T 2(DX +AX)2

y0) + ρ2(U)B′ε,T/ε (3.138)

on π∗2Λ(T ∗S)⊗̂C∞(Ty0Y,EZ,y0). For (U, x) ∈ NY g/Y,y0 × Xy0 , |U | < α0/4, ε > 0,

set

(Sεs)(U, x) = s (U/ε, x) . (3.139)

Put

L2
ε,T := S−1

ε L1
ε,TSε. (3.140)

Set dimTy0Y
g = l′ and dimNY g/Y,y0 = 2l′′. Let {f1, · · · , fl′} be an orthonormal

basis of Ty0Y
g and let {fl′+1, · · · , fl′+2l′′} be an orthonormal basis of NY g/Y,y0 . Let

Rε be a rescaling operator such that

Rε(c(ei)) = c(ei),

Rε(c(f
H
p,1)) =

fp∧
ε
− ε ifp , for 1 6 p 6 l′,

Rε(c(f
H
p,1)) = c(fHp,1), for l′ + 1 6 p 6 l′ + 2l′′.

(3.141)

Then Rε is a Clifford algebra homomorphism. Set

L3
ε,T = Rε(L

2
ε,T ) (3.142)

on π∗2Λ(T ∗S)⊗̂Λ(T ∗y0Y
g)⊗̂C∞(Ty0Y,EX,N,y0), where EX,N,y0 := C∞(Xy0 , π

∗
2SN ⊗̂SX⊗̂E|Xy0

)

and SN is the spinor for NY g/Y,y0 .

Corresponding to [34, Lemma 4.4], from (3.133)-(3.135), we have

Lemma 3.25. When ε→ 0, the limit L3
0,T = lim

ε→0
L3
ε,T exists in the sense of [34,

(7.108)] and

L3
0,T |V g = −

(
∂p +

1

4
〈RTY |V gU, fHp,1〉

)2

+
1

2
RLY |V g + B′′T 2 |V g . (3.143)

So all computations in our case are the same as [34, Section 7].
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4 Equivariant differential K-theory

In this section, we assume that the G-action on B has finite stabilizers only, i.e.,

for any b ∈ B, Gb := {g ∈ G : gb = b} is finite. With this action, we construct an

analytic model of equivariant differential K-theory and prove some properties using

the results in Section 3.

4.1 Definition of equivariant differential K-theory

In this subsection, we construct an analytic model of equivariant differential K-

theory. When G = {e}, this construction is similar as that in [16] except replacing

the taming and KK-theory to the spectral section and higher spectral flow.

Let E be a G-equivariant complex vector bundle over B. Then its restriction

to Bg is acted on fibrewise by g for g ∈ G. So it decomposes as a direct sum of

subbundles Ev for each eigenvalue v of g. Set φg(E) :=
∑
vEv. Then it induces a

homomorphism (for K1
G, replacing B by B × S1 and use (2.19))

φg : K∗G(B)⊗ C −→ [K∗(Bg)⊗ C]CG(g), (4.1)

where CG(g) is the centralizer of g in G. Let (g) be the conjugacy class of g ∈ G.

For g, g′ ∈ (g), there exists h ∈ G, such that g′ = h−1gh. Furthermore, the map

h : Bg
′
/CG(g′)→ Bg/CG(g) (4.2)

is a homeomorphism . So

[K∗(Bg)⊗ C]CG(g) ' [K∗(Bg
′
)⊗ C]CG(g′). (4.3)

By [1, Corollary 3.13], we know that the additive decomposition

φ = ⊕(g),g∈Gφg : K∗G(B)⊗ C→
⊕

(g),g∈G

[K∗(Bg)⊗ C]CG(g) (4.4)

is an isomorphism, where (g) ranges over the conjugacy classes of G.

If Bg 6= ∅, then there exists b ∈ Bg such that g ∈ Gb. The conjugacy class of

Gb is the type of the orbit G · b. Since B is compact, there are only finitely many

orbit types. Since all stablizers are finite groups, we see that the direct sum in (4.4)

only has finite terms. From the isomorphism (4.3), the direct sum in (4.4) does not

depend on the choice of the element in (g) in the sense of (4.3).

From (4.2), we also know that the map h∗ induces an isomorphism

h∗ : [Ω∗(Bg,C)]CG(g) → [Ω∗(Bg
′
,C)]CG(g′). (4.5)

We denote by

Ω∗deloc,G(B,C) :=
⊕

(g),g∈G

{
[Ω∗(Bg,C)]CG(g)

}
, (4.6)

the set of delocalized differential forms, where {·} denotes the isomorphic class in

sense of (4.5). The definition above does not depend on the choice of g ∈ (g). It is

easy to see that the exterior differential operator d preserves Ω∗deloc,G(B,C). We de-

note by the delocalized de Rham cohomology H∗deloc,G(B,C) the cohomology of the

differential complex (Ω∗deloc,G(B,C), d). Then from (4.1) and (4.4), the equivariant

Chern character isomorphism can be naturally defined by

chG : K∗G(B)⊗ C '−→ H∗deloc,G(B,C),

K 7→
⊕

(g),g∈G

{ch(φg(K))} . (4.7)
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We note that ch(φg(K)) = chg(K) is CG(g)-invariant by the definition.

Observe that the fixed point set for g-action coincides with that for g−1-action.

Set

H∗deloc,G(B,R) := {c = ⊕(g),g∈G{cg} ∈ H∗deloc,G(B,C) : ∀g ∈ G, cg−1 = cg}. (4.8)

Let Ω∗deloc,G(B,R) ⊂ Ω∗deloc,G(B,C) be the ring of forms ω = ⊕(g),g∈G{ωg}, such

that ∀g ∈ G,ωg−1 = ωg. Then H∗deloc,G(B,R) is the cohomology of the differential

complex (Ω∗deloc,G(B,R), d). Since ch(φg−1(K)) = ch(φg(K)), from (4.7), for any

K ∈ K∗G(B), chG(K) ∈ H∗deloc,G(B,R). Thus chG(K∗G(B) ⊗ R) ⊆ H∗deloc,G(B,R).

Since (4.7) is an isomorphism, we obtain a group isomorphism

chG : K∗G(B)⊗ R '−→ H∗deloc,G(B,R). (4.9)

Definition 4.1. (Compare with [16, Definition 2.4]) A cycle for an equivariant

differential K-theory class over B is a pair (F , ρ), where F ∈ F∗G(B) and ρ ∈
Ω∗deloc,G(B,R)/Im d. The cycle (F , ρ) is called even (resp. odd) if F is even (resp.

odd) and ρ ∈ Ωodd
deloc,G(B,R)/Im d (resp. ρ ∈ Ωeven

deloc,G(B,R)/Im d). Two cycles

(F , ρ) and (F ′, ρ′) are called isomorphic if F and F ′ are isomorphic and ρ = ρ′.

Let ÎC
0

G(B) (resp. ÎC
1

G(B)) denote the set of isomorphic classes of even (resp. odd)

cycles over B with a natural abelian semi-group structure by (F , ρ) + (F ′, ρ′) =

(F + F ′, ρ+ ρ′).

For F ∈ F∗G(B), we assume that there exists a perturbation operator A with

respect to D(F). For any g ∈ G, by Definition 3.12, the equivariant eta form

restricted on the fixed point set of g is CG(g)-invariant, that is, η̃g(F|Bg , A|Bg ) ∈
[Ω∗(Bg,C)]CG(g). Let h∗ be the map in (4.5). Since the perturbation operator A is

equivariant, from Definition 3.12, we have

η̃g′(F|Bg′ , A|Bg′ ) = h∗η̃g(F|Bg , A|Bg ). (4.10)

From Definition 3.12, η̃g−1(F|Bg , A|Bg ) = η̃g(F|Bg , A|Bg ). So the following defini-

tion is well-defined.

Definition 4.2. The delocalized eta form η̃G(F , A) is defined by

η̃G(F , A) =
⊕

(g),g∈G

{η̃g(F|Bg , A|Bg )} ∈ Ω∗deloc,G(B,R)/Im d. (4.11)

By the same process, we can define

FLIG(F) =
⊕

(g),g∈G

{FLIg(F)} ∈ Ω∗deloc,G(B,R). (4.12)

From (3.66), we have

dη̃G(F , A) = FLIG(F). (4.13)

Let F ∈ F∗G(B) and A be a perturbation operator with respect to D(F). Then

by Definition 2.3, there exists a perturbation operator Aop with respect to D(Fop)

such that

η̃G(Fop, Aop) = −η̃G(F , A). (4.14)

Let F ,F ′ ∈ F∗G(B), A, A′ be perturbation operators with respect to D(F), D(F ′)
respectively. By Definition 3.12, we have

η̃G(F + F ′, A tB A′) = η̃G(F , A) + η̃G(F ′, A′). (4.15)
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From Remark 3.4, we know that for any F ∈ F∗G(B), there exists a perturbation

operator A with respect to D(F + Fop) and A = Aop. From (4.14), we have

η̃G(F + Fop, A) = 0. (4.16)

Definition 4.3. (Compare with [16, Definition 2.10]) We call two cycles (F , ρ)

and (F ′, ρ′) paired if Ind(D(F)) = Ind(D(F ′)), and there exists a perturbation

operator A with respect to D(F + F ′op) such that

ρ− ρ′ = η̃G(F + F
′op, A). (4.17)

From (4.14)-(4.16), we have

Lemma 4.4. (Compare with [16, Lemmas 2.11, 2.12]) The relation ”paired” is

symmetric, reflexive and compatible with the semigroup structure on ÎC
∗
G(B).

Definition 4.5. (Compare with [16, Definition 2.14]) Let ∼ denote the equiv-

alence relation generated by the relation ”paired”. The equivariant differential

K-group K̂0
G(B) (resp. K̂1

G(B)) is the group completion of the abelian semigroup

ÎC
even

G (B)/ ∼ (resp. ÎC
odd

G (B)/ ∼).

If (F , ρ) ∈ ÎC
∗
G(B), we denote by [F , ρ] ∈ K̂∗G(B) the corresponding class in equiv-

ariant differential K-group. From (4.14)-(4.16), for any [F , ρ], [F ′, ρ′] ∈ K̂∗G(B), we

have

[F , ρ] = [F + F
′op, ρ− ρ′] + [F ′, ρ′]. (4.18)

So every element of K̂∗G(B) can be represented in the form [F , ρ]. Furthermore, we

have −[F , ρ] = [Fop,−ρ].

4.2 Push-forward map

In this subsection, we construct a well-defined push-forward map in equivariant

differential K-theory and prove the functoriality of it using the theorems in Section

3. This solves a question proposed in [16] when G = {e}. We use the notation in

Section 1.4.

Let πY : V → B be an equivariant smooth surjective proper submersion of

compact G-manifolds with compact orientable fibers Y . We assume that the G-

action on B has finite stabilizers only. Thus, so is the action on V . We assume that

TY is oriented and πY has an equivariant K-orientation in Definition 2.8.

For g ∈ G, the fixed point set V g is the total space of the fiber bundle πY |V g :

V g → Bg with fibers Y g. Since the pullback isomorphism h∗ in (4.5) commutes

with the integral along the fiber, for α = ⊕(g),g∈G{αg} ∈ Ω∗deloc,G(V,R), the integral∫
Y,G

α :=
⊕

(g),g∈G

{∫
Y g

αg

}
∈ Ω∗deloc,G(B,R) (4.19)

does not depend on g ∈ (g). So it defines an integral map∫
Y,G

: Ω∗deloc,G(V,R)→ Ω∗deloc,G(B,R). (4.20)

Consider the set Ô∗G(πY ) of equivariant geometric data ôY = (THπY
V, gTY ,∇LY , σY ),

where σY ∈ Ωodddeloc,G(V )/Imd.

Let

TdG(∇TY ,∇LY ) :=
⊕

(g),g∈G

{
Tdg(∇TY ,∇LY )

}
∈ Ω∗deloc,G(V,R). (4.21)
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Let ô′Y = (T
′H
πY
V, g

′TY ,∇′LY , σ′Y ) ∈ Ô∗G(πY ) be another equivariant tuple with the

same equivariant K-orientation in Definition 2.8. As in (3.93), from [42, Theorem

B.5.4], we can construct the Chern-Simons form T̃dG(∇TY ,∇LY , ∇′TY ,∇′LY ) ∈
Ωodddeloc,G(V )/Imd such that

d T̃dG(∇TY ,∇LY ,∇
′TY ,∇

′LY ) = TdG(∇
′TY ,∇

′LY )− TdG(∇TY ,∇LY ). (4.22)

We introduce a relation ôY ∼ ô′Y as in [16]: two equivariant tuples ôY , ô′Y are

related if and only if

σ′Y − σY = T̃dG(∇TY ,∇LY ,∇
′TY ,∇

′LY ), (4.23)

where we mark the objects associated with the second tuple by ′.

Definition 4.6. (Compare with [16, Definition 3.5]) The set of equivariant dif-

ferential K-orientations is the set of equivalence classes Ô∗G(πY )/ ∼.

We now start with the construction of the push-forward map π̂Y ! : K̂∗G(V ) →
K̂∗G(B) for a given equivariant differential K-orientation which extends Theorem 2.9

to the differential case. For [FX , ρ] ∈ K̂∗G(V ), let FZ be the equivariant geometric

family defined in (2.37). We define (cf. [16, (17)])

π̂Y !([FX , ρ]) =

[
FZ ,

∫
Y,G

TdG(∇TY ,∇LY ) ∧ ρ+ F̃LIG
(
∇TY,TX ,∇LZ ,∇TZ ,∇LZ

)
+

∫
Y,G

σY ∧ (FLIG(FX)− dρ)

]
∈ K̂∗G(B), (4.24)

where F̃LIG :=
⊕

(g),g∈G F̃LIg ∈ Ω∗deloc,G(B,R)/Imd.

Theorem 4.7. (Compare with [16, Lemma 3.14]) The map π̂Y ! : K̂∗G(V ) →
K̂∗G(B) in (4.24) is well-defined.

Proof. Let (FX , ρ), (F ′X , ρ′) be two cycles over V . By (4.24), we have

π̂Y !(FX , ρ)− π̂Y !(F ′X , ρ′) = π̂Y !(FX + F
′op
X , ρ− ρ′). (4.25)

If (FX , ρ) is paired with (F ′X , ρ′), there exists a perturbation operator A, such that

ρ− ρ′ = η̃G(FX + F
′op
X , A). (4.26)

So we only need to prove that if there exists a perturbation operator AX with

respect to D(FX), π̂Y !([FX , η̃G(FX , AX)]) = 0 ∈ K̂∗G(B).

From (4.24), we have

π̂Y !([FX , η̃G(FX , AX)]) =

[
FZ ,

∫
Y,G

TdG(∇TY ,∇LY ) η̃G(FX , AX)

+ F̃LIG
(
∇TY,TX ,∇LZ ,∇TZ ,∇LZ

)
+

∫
Y,G

σY ∧ (FLIG(FX)− dη̃G(FX , AX))

]
. (4.27)

From Proposition 3.3 (iii) and Lemma 3.6, there exists a perturbation operator AZ
with respect to D(FZ). By Theorem 3.18, (4.13), (4.15) and (4.19), there exists

x ∈ K∗G(B) such that

π̂Y !(FX , η̃G(FX , AX)) = [FZ , η̃G(FZ , AZ)− chG(x)] . (4.28)
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From Proposition 3.9, if x ∈ K1
G(B),there exist F ∈ F1

G(B) and equivariant spectral

sections P , Q with respect to D(F), such that [P − Q] = x. Let AP , AQ be

perturbation operators associated with P , Q respectively. From Theorem 3.17, we

have

chG(x) = η̃G(F , AP )− η̃G(F , AQ). (4.29)

If x ∈ K0
G(B), by Proposition 3.9, there exist F1,F2 ∈ F0

G(B) and equivariant

spectral sections P1, Q1 of D(F1) and P2, Q2 of D(F2), such that x = [P1 −Q1]−
[P2−Q2]. Let APi , AQi be perturbation operators associated with Pi, Qi for i = 0, 1.

From Theorem 3.17, letting F = F1 + F2, AP = AP1 tB AQ2 , AQ = AP2 tB AQ1 ,

we also have

chG(x) = η̃G(F1, AP1
)− η̃G(F1, AQ1

)− (η̃G(F2, AP2
)− η̃G(F2, AQ2

))

= η̃G(F1 + F2, AP1
tB AQ2

)− η̃G(F1 + F2, AP2
tB AQ1

)

= η̃G(F , AP )− η̃G(F , AQ). (4.30)

By (4.14), (4.28)-(4.30) and Definition 4.3, we have

π̂Y !(FX , η̃G(FX , AX)) =
[
FZ , η̃G(FZ , AZ)− η̃G(F , AP )− η̃G(Fop, Aop

Q )
]

= [F + Fop, 0] = [F , 0]− [F , 0] = 0 ∈ K̂∗G(B). (4.31)

Then from Theorem 2.9, we complete the proof of Theorem 4.7.

Here our construction of π̂Y ! involve an explicit choice of a representative ôY =

(THπY
V, gTY , ∇LY , σY ) of the equivariant differential K-orientation. In fact, it does

not depend on the choice.

Lemma 4.8. (Compare with [16, Lemma 3.17]) The homomorphism π̂Y ! : K̂∗G(V )→
K̂∗G(B) only depend on the equivariant differential K-orientation.

Proof. Let ôY = (THπY
V, gTY ,∇LY , σY ), ô′Y = (T

′H
πY
V, g

′TY ,∇′LY , σ′Y ) be two

representatives of an equivariant differential K-orientation. We will mark the objects

associated with the second representative by ′. From (3.94), we could get

F̃LIG(∇TY,TX ,∇LZ ,∇
′TY,TX ,∇

′LZ )

=

∫
Y,G

T̃dG(∇TY ,∇LY ,∇
′TY ,∇

′LY ) FLIG(FX). (4.32)

Then from (4.22), (4.23) and (4.32), we have

π̂′Y !([FX , ρ])− π̂Y !([FX , ρ]) = [F ′Z + Fop
Z ,∫

Y,G

(
TdG(∇

′TY ,∇
′LY )− TdG(∇TY ,∇LY )

)
∧ρ−F̃LIG

(
∇
′TZ ,∇

′LZ ,∇
′TY,TX ,∇

′LZ

)
+F̃LIG

(
∇TZ ,∇LZ ,∇TY,TX ,∇LZ

)
+

∫
Y,G

(σ′Y − σY ) ∧ (FLIG(FX)− dρ)

]
=

[
F ′Z + Fop

Z ,

∫
Y,G

d T̃dG(∇TY ,∇LY ,∇
′TY ,∇

′LY ) ∧ ρ

−
∫
Y,G

T̃dG(∇TY ,∇LY ,∇
′TY ,∇

′LY ) ∧ dρ

+

∫
Y,G

T̃dG(∇TY ,∇LY ,∇
′TY ,∇

′LY ) FLIG(FX)

+ F̃LIG

(
∇TZ ,∇LZ ,∇

′TZ ,∇
′LZ

)
− F̃LIG

(
∇TY,TX ,∇LZ ,∇

′TY,TX ,∇
′LZ

)]
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= [F ′Z + Fop
Z , F̃LIG (FZ ,F ′Z)]. (4.33)

By Proposition 3.3 (iii) and Lemma 3.6, there exists a perturbation operator A

with respect to D(F ′Z +Fop
Z ). By Theorem 3.17 and (4.16), there exists x ∈ K∗G(B)

such that

F̃LIG (FZ ,F ′Z) = F̃LIG (FZ + Fop
Z ,F ′Z + Fop

Z )

= −η̃G(F ′Z + Fop
Z , A) + chG(x). (4.34)

Following the same process in (4.28)-(4.31), we have π̂′Y !([FX , ρ]) = π̂Y !([FX , ρ]).

The proof of Lemma 4.8 is completed.

We now discuss the functoriality of the push-forward maps with respect to the

composition of fiber bundles. Let πY : V → B with fibers Y be as in the above sub-

section together with a representative of an equivariant differential K-orientation

ôY = (THπY
V, gTY ,∇LY , σY ). Let πU : B → S be another equivariant smooth

surjective proper submersion with compact oriented fibers U together with a repre-

sentative of an equivariant differential K-orientation ôU = (THπU
B, gTU ,∇LU , σU ).

Let πA := πU ◦ πY : V → S be the composition of two submersions with fibers

A. Let THπA
V be a horizontal subbundle associated with πA. We assume that

THπA
V ⊂ THπY

V . Set gTA = π∗Y g
TU ⊕ gTY , ∇LA = π∗Y∇LU ⊗∇LY .

Definition 4.9. (Compare with [16, Definition 3.21]) We define ôA = ôU ◦ ôY by

ôA := (THπA
V, gTA,∇LA , σA), (4.35)

where

σA := σY ∧ π∗Y TdG(∇TU ,∇LU ) + TdG(∇TY ,∇LY ) ∧ π∗Y σU
+ T̃dG(∇TA,∇LA ,∇TU,TY ,∇LA)− dσY ∧ π∗Y σU . (4.36)

Theorem 4.10. (Compare with [16, Theorem 3.23]) We have the equality of

homomorphisms K̂∗G(V )→ K̂∗G(S)

π̂A! = π̂U ! ◦ π̂Y !. (4.37)

Proof. The topological part of Theorem 4.10 is just Theorem 2.10 and the differ-

ential part follows from a direct calculation using (4.24) and (4.36).

4.3 Cup product

In this subsection, we construct the cup product in equivariant differential K-theory

in our model as in [16,18] and prove the desired properties.

Let f : B1 → B2 be a G-equivariant smooth map. We define the induced homo-

morphism f∗ : K̂∗G(B2) → K̂∗G(B1) as follows. For F ∈ F∗G(B2), in order to define

f∗F , as remarked in Section 2.2, we need take care with the the pullback of the hor-

izontal subbundle. Let F be the natural map from f∗W to W . We choose the new

horizontal subbundle THf∗π(f∗W ) by the condition that dF (THf∗π(f∗W )) ⊆ THπ (W ).

Note that the chosen of the new horizontal subbundle is not unique. If A is a per-

turbation operator with respect to D(F), then f∗A is a perturbation operator with

respect to D(f∗F). Moreover, from Definition 3.12, we have

η̃G(f∗F , f∗A) = f∗η̃G(F , A). (4.38)
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By Proposition 3.15 and Definition 4.3, if F1, F2 ∈ F∗G(B) be the pullbacks of F
associated with distinct horizontal subbundles, (F1, 0) ∼ (F2, 0). So we obtain a

well defined pullback map

f∗ : K̂∗G(B2)→ K̂∗G(B1). (4.39)

Evidently, Id∗B = IdK̂G(B). Let f ′ : B0 → B1 be another equivariant smooth map.

We could get

f
′∗f∗ = (f ◦ f ′)∗ : K̂∗G(B2)→ K̂∗G(B0). (4.40)

Let [F , ρ] ∈ K̂i
G(B) and [F ′, ρ′] ∈ K̂∗G(B), where i = 0, 1. We define (compare

with [16, Definition 4.1])

[F , ρ] ∪ [F ′, ρ′] := [F ×B F ′, (−1)iFLIG(F) ∧ ρ′

+ ρ ∧ FLIG(F ′)− (−1)idρ ∧ ρ′]. (4.41)

It is obvious that the product is natural with respect to pullbacks.

Proposition 4.11. (Compare with [16, Propositions 4.2, 4.5]) (i) The product

is well defined. It turns B 7→ K̂∗G(B) into a contravariant functor from compact

smooth G-manifolds with finite stablizers to unital graded commutative rings. The

unit is simply given by [F , 0], where F is the equivariant geometric family in Ex-

ample 2.5 a) such that E+ is 1 dimensional trivial representation and E− = 0.

(ii) The product is associative.

(iii) Let πU : B → S be an equivariant smooth proper submersion with ori-

ented fibers and an equivariant differential K-orientation. For x ∈ K̂∗G(B) and

y ∈ K̂∗G(S), we have

π̂U !(π∗Uy ∪ x) = y ∪ π̂U !(x). (4.42)

Proof. The product is obviously biadditive.

From Theorem 3.19 and a direct calculation, we could get the product is com-

patible with the equivalence relation in differential K-theory. Other properties are

the direct extension of the discussions in [16, p47-50].

Theorem 4.12. (Compare with [16, Section 3,4]) The equivariant differential

K-theory K̂G is a contravariant functor B → K̂G(B) from the category of compact

smooth G-manifolds with finite stabilizers to unital Z2-graded commutative rings

together with well-defined transformations

(1) R : K̂∗G(B)→ Ω∗deloc,G,cl(B,R) (curvature);

(2) I : K̂∗G(B)→ K∗G(B) (underlying KG-group);

(3) a : Ω∗deloc,G(B,R)/Im d→ K̂G(X) (action of forms),

where Ω∗deloc,G,cl(B,R) denotes the set of closed delocalized differential forms,

such that

(1) the following diagram commutes

K̂∗G(B) K∗G(B)

Ω∗deloc,G,cl(B,R) H∗deloc,G(B,R);

I

chGR

de Rham

(2)

R ◦ a = d; (4.43)
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(3) a is of degree 1;

(4) for x, y ∈ K̂∗G(B) and α ∈ Ω∗deloc,G(B,R)/Imd, we have

R(x ∪ y) = R(x) ∧R(y), I(x ∪ y) = I(x) ∪ I(y), a(α) ∪ x = a(α ∧R(x)); (4.44)

(5) the following sequence is exact:

K∗−1
G (B)

chG−→ Ω∗−1
deloc,G(B,R)/Im d

a−→ K̂∗G(B)
I−→ K∗G(B) −→ 0. (4.45)

Proof. We define the natural transformation

I : K̂∗G(B)→ K∗G(B) (4.46)

by

I([F , ρ]) := Ind(D(F)). (4.47)

From Definition 4.3, the transformation I is well defined.

Let a be a parity-reversing natural transformation

a : Ω
even/odd
deloc,G (B,R)/Im d→ K̂

1/0
G (B) (4.48)

by

a(ρ) := [∅,−ρ], (4.49)

where ∅ is the empty geometric family.

We define a transformation

R : ÎC
∗
G(B)→ Ω∗deloc,G,cl(B,R) (4.50)

by

R((F , ρ)) := FLIG(F)− dρ. (4.51)

If (F ′, ρ′) is paired with (F , ρ), there exists a perturbation operator A with respect

to D(F + F ′op), such that ρ − ρ′ = η̃G(F + F ′op, A). From (3.66) and (4.17), we

have

R((F , ρ)) = FLIG(F)− dρ = FLIG(F)− dρ′ − dη̃G(F + F
′op, A)

= FLIG(F)− dρ′ − FLIG(F) + FLIG(F ′) = R((F ′, ρ′)). (4.52)

Since R is additive, it descends to ÎC
∗
G(B)/ ∼ and finally to the map R : K̂∗G(B)→

Ω∗deloc,G,cl(B,R). Let f : B1 → B2 be a G-equivariant smooth map. It follows from

FLIG(f∗F) = f∗FLIG(F) that R is natural.

From (4.49) and (4.51), we have

R ◦ a = d. (4.53)

By (3.51), the diagram commutes.

The formulas in (4.44) follow from straight calculations using the definitions.

At last, we prove the exactness of the sequence (4.45).

The surjectivity of I follows from Proposition 2.6.

Next, we show the exactness at K̂∗G(B). It is obvious that I ◦ a = 0. For a cycle

(F , ρ), if I([F , ρ]) = 0, we have Ind(D(F)) = 0. By Example 2.5 b), we could take

F such that at least one component of the fiber has the nonzero dimension. So
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there exists a perturbation operator A with respect to D(F) from Proposition 3.3.

By (4.17) and (4.49), we have

[F , ρ] = a(η̃G(F , A)− ρ). (4.54)

Finally, we prove the exactness at Ω∗−1
deloc,G,cl(B,R)/Im d. Following the same

process in (4.28)-(4.31), for any x ∈ K∗G(B), by (4.49),

a ◦ chG(x) = (∅, η̃G(F , AQ)− η̃G(F , AP )) = [F , 0]− [F , 0] = 0. (4.55)

If a(ρ) = 0, for any equivariant geometric family F with a perturbation operator

A with respect to D(F), by Definition 4.3 and (4.54), we have

[F , η̃G(F , A)− ρ] = a(ρ) = 0 = [F , η̃G(F , A)]. (4.56)

So by Definition 4.5, there exists another cycle (F ′, ρ′), such that (F + F ′, ρ′ +

η̃G(F , A) − ρ) ∼ (F + F ′, ρ′ + η̃G(F , A)). Since ∼ is generated by ”paired”, we

have the cycles {(Fi, ρi)}06i6r such that for any 1 6 i 6 r, (Fi, ρi) is paired with

(Fi−1, ρi−1), (F0, ρ0) = (F + F ′, ρ′ + η̃G(F , A) − ρ) and (Fr, ρr) = (F + F ′, ρ′ +
η̃G(F , A)). By Definition 4.3, for any 1 6 i 6 r, there exists a perturbation operator

Ai with respect to D(Fi−1 + Fop
i ) such that ρi−1 − ρi = η̃G(Fi−1 + Fop

i , Ai). Let

A′i (0 6 i 6 r) be the perturbation operator with respect to D(Fi + Fop
i ) taken

in (4.16). Therefore, by Theorem 3.17, (4.15) and (4.16), there exists x ∈ K∗G(B),

such that

− ρ =

r∑
i=1

(ρi−1 − ρi) = η̃G(F0 + Fop
1 + · · ·+ Fr−1 + Fop

r , A1 tB · · · tB Ar)

= η̃G(F0 + Fop
r + · · ·+ Fr−1 + Fop

r−1, A1 tB · · · tB Ar)
− η̃G(F0 + Fop

r + · · ·+ Fr−1 + Fop
r−1, A

′
0 tB · · · tB A′r−1) = chG(x). (4.57)

The proof of Theorem 4.12 is completed.

The direct extension of [16, Proposition 3.19 and Lemma 3.20] show that the

pullback map and the exact sequence (4.45) are compatible with the push-forward

maps.

Remark 4.13. If the group G is trivial, all the models of differential K-theory are

isomorphic (see e.g. [17]). For equivariant case, the uniqueness is an open question.

4.4 Differential K-theory for orbifolds

In [18], Bunke and Schick constructed the first model of the differential K-theory for

orbifolds by using the language of stacks and proved the desired properties. It could

be regarded as a model of the equivariant differential K-theory when the action has

finite stabilizers. In the subsections above, inspired by the constructions in [16,46],

we construct the a model of the equivariant differential K-theory when the action

has finite stabilizers. In this subsection, we will explain that this model could also

be regarded as a model for orbifolds.

Let X be a compact orbifold (effective orbifold in some literatures). There exist

a compact smooth manifold B and a compact Lie group G such that X is diffeo-

morphic to a quotient for a smooth effective G-action on B with finite stabilizers

(see [1, Theorem 1.23]).

Let K0
orb(X ) be the orbifold K0-group of the compact orbifold X defined as

the Grothendieck ring of the equivalence classes of orbifold vector bundles over X .

Since X is an orbifold, X × S1 is an orbifold. Moreover, i : X → X × S1 is a
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morphism in the category of orbifolds. As in (2.19), we define the orbifold K1

group K1
orb(X ) := ker(i∗ : K0

orb(X × S1)→ K0
orb(X )).

Let p : B → B/G = X be the projection. Then from [1, Proposition 3.6], it

induces an isomorphism p∗ : K∗orb(X ) → K∗G(B). Note that if the orbifold X can

be presented in two different ways as a quotient, say B′/G′ ' X ' B/G, it shows

that K∗G′(B
′) ' K∗orb(X ) ' K∗G(B). So we can consider the orbifold K-theory as a

special case of the equivariant K-theory.

Furthermore, from the definition of the differential structure on orbifolds, we

know that Ω∗deloc,G(B,R)/Imd ' Ω∗deloc,G′(B
′,R)/Imd. From the exact sequence in

(4.45) and five lemma, we have

K̂∗G′(B
′) ' K̂∗G(B). (4.58)

Therefore, this model of equivariant differential K-theory for G-action with finite

stabilizers could be regarded as a model of differential K-theory for orbifolds.
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Appendix A Equivariant K-theory for smooth complex vec-
tor bundles

In this appendix, we show that for a compact Lie group G and a smooth com-

pact manifold B with a smooth G-action, K0
G(B) in [48] defined by G-equivariant

topological complex vector bundles could be studied using the G-equivariant smooth

complex vector bundles. Although this is certainly well-known (see e.g., [21, (2.1)]),

we were unable to find an explicit proof in the literature. We state it here for the

completeness following the suggestion of a referee. In this appendix, all vector

bundles are complex.

For a representation V of G, for v ∈ V , if Gv generates a finite dimensional

subspace of V , we say v is a G-finite vector in V .

Let E be a G-equivariant smooth vector bundle over B. Take a Hermitian metric

on E and let ‖ · ‖C0(B,E) be the corresponding C0-norm. For s ∈ C∞(X,E), gs ∈
C∞(X,E). Thus for any f ∈ C∞(G),

sf :=

∫
G

f(g)gs dg ∈ C∞(B,E), (A.1)

where dg is the Haar measure. Since G acts continuously on C∞(B,E), for any

ε > 0, there exists a neighborhood U of the unity e ∈ G such that for any g ∈ U ,

‖gs−s‖C0(B,E) < ε/2. Let v ∈ C∞(G) be a non-negative function vanishing outside

U with
∫
G
v(g)dg = 1. Then ‖sv − s‖C0(B,E) < ε/2. Let Ms := ‖

∫
G
gs dg‖C0(B,E).

From Peter-Weyl theorem, there exists a G-finite vector u ∈ C∞(G), such that

‖v− u‖C0(G) <
ε

2Ms
. Thus, ‖sv − su‖ < ε/2. Observe that su is a G-finite vector in

C∞(B,E). We have the following lemma.

Lemma A.1. (cf. [45, §2.16]) For s ∈ C∞(B,E), for any ε > 0, there exists a

G-finite vector s′ ∈ C∞(B,E) such that ‖s− s′‖C0(B,E) < ε.

For a finite dimensional complex representation M of G, we consider the G-action

on B ×M given by

g(b, u) = (gb, gu), ∀g ∈ G, b ∈ B, u ∈M. (A.2)

Thus B ×M → B is an equivariant smooth vector bundle over B. In this case, a

G-invariant Hermitian inner product on M forms a G-invariant Hermitian smooth

metric on this vector bundle. The following lemma extends [48, Proposition 2.4] to

the category of G-equivariant smooth vector bundles.

Proposition A.2. Let E be a G-equivariant smooth vector bundle over B. There

exist a finite dimensional complex representation M of G and a G-equivariant

smooth vector bundle F over B such that E ⊕ F is isomorphic to B ×M as G-

equivariant smooth vector bundles.
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Proof. It suffices to find a equivariant smooth surjection from some B×M to E.

Then F is the orthogonal complement of E in B ×M .

For any b ∈ B, we can choose a finite set σb ⊂ C∞(B,E), such that {s(b)}s∈σb

spans Eb. From Lemma A.1, we can choose σb such that it consists of G-finite

vectors in C∞(B,E). There exists a neighborhood of b, Ub, such that for any

x ∈ Ub, {s(x)}s∈σb
spans Ex. Suppose Ub1 , · · · , Ubm covers B. Let σ = ∪iσbi .

Let M be the finite dimensional subspace of C∞(B,E) generated by σ. Then the

evaluation map B ×M → E is the required surjection.

Lemma A.3. (Compare with [30, Theorem 3.5]) For every G-equivariant topo-

logical vector bundle E over B, there exists a G-equivariant smooth vector bundle Es

over B, which is unique up to isomorphism of G-equivariant smooth vector bundles,

such that Es is isomorphic to E as G-equivariant topological vector bundles.

Proof. By [48, Proposition 2.4], the C0-version of Proposition A.2, there exists a

finite dimensional complex representation M of G and an equivariant embedding

i : E → B × M . Let GrM,r be the Grassmannian parameterizing all complex

linear subspaces of finite dimensional complex representation M of given dimension

r. Since G acts linearly on M , there is a induced smooth G-action on smooth

manifold GrM,r. Let r be the rank of E. Define continuous map h : B → GrM,r

by h(b) := i(Eb) ∈ GrM,r, ∀b ∈ B. Since i is equivariant, h is an equivariant map.

Let γM,r be the universal bundle over GrM,r, which is an equivariant smooth vector

bundle over GrM,r. Then h∗γM,r is isomorphic to E as G-equivariant topological

vector bundles.

For equivariant continuous map h : B → GrM,r, there exists an equivariant

smooth map hG : B → GrM,r, which is G-homotopy to h continuously (see e.g.,

[13, Theorem VI.4.2]). So Es := h∗GγM,r is a G-equivariant smooth vector bundle

which is isomorphic to h∗γM,r ' E as G-equivariant topological vector bundles.

For two G-equivariant smooth vector bundles Es1 and Es2 , which are isomorphic

as G-equivariant topological vector bundles, there exist G-equivariant smooth maps

hi : B → GrM,r, i = 1, 2, such that Esi = h∗i γM,r and h1 is G-homotopy to h2

continuously. Since G is compact, h1 is G-homotopy to h2 smoothly (see e.g., [13,

Corollary VI.4.3]). Thus Es1 is isomophic to Es2 as G-equivariant smooth vector

bundles.

The proof of Lemma A.3 is completed.

Proposition A.4. Let K0
G,sm(B) be the Grothendieck group of the G-equivariant

smooth vector bundles over B. We have

K0
G,sm(B) ' K0

G(B). (A.3)

Proof. Forgetting the smooth structure, we obtain a well-defined mapA : K0
G,sm(B)→

K0
G(B). Let VectG(B) and VectG,sm(B) be the equivalence classes of G-equivariant

topological and smooth vector bundles over B. Then Lemma A.3 induces a well-

defined map VectG(B) → VectG,sm(B). For E1, E2 in VectG(B), if [E1] = [E2] ∈
K0
G(B), there exists topological vector bundle F such that E1 ⊕ F is isomorphic

to E2 ⊕ F as G-equivariant topological vector bundles. Let Es1 , Es2 and F s be the

corresponding G-equivariant smooth vector bundles. Since Es1⊕F s is isomorphic to

Es2⊕F s as G-equivariant topological vector bundles, from the uniqueness in Lemma

A.3, they are isomorphic as G-equivariant smooth vector bundles. Thus we get a

well-defined map B : K0
G(B) → K0

G,sm(B). Easy to see that A ◦ B and B ◦ A are

all identity maps.

The proof of Proposition A.4 is completed.
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Appendix B Equivariant family index for odd dimensional
fibers

In this appendix, we summarize some results on the equivariant family index for

odd dimensional fibers and the explanations for K1
G(B) (cf. [4, 26,44]).

We consider the equivariant Z2-graded Hilbert bundle E with fiber L2(Zb, E)

over b ∈ B. From [26, Lemma A.32], there exists an equivariant embedding from

E to the equivariant trivial Hilbert bundle B × L2(G) ⊗ C(R) ⊗ H, where C(R)

is the complex Clifford algebra and H is a separable Hilbert space. As in [26,

Definitions A.39 and A.40], for any equivariant Z2-graded Hilbert space H, we

denote by Fred0(H) the space of odd skew-adjoint equivariant Fredholm operators

A, for which A2 + 1 is compact, topologized as a subspace of B(H)×K(H), where

B(H) and K(H) are the sets of bounded linear operators and compact operators

on H given the compact-open topology and the norm topology respectively. Denote

by Fred1(H) the subspace of Fred0(C(R)⊗H) consisting of odd operators A, which

supercommute with the action of C(R) and for which the essential spectrum of

−
√
−1c(e)A contains both positive and negative eigenvalues, where c(e) is the basis

element of C(R). By [26, §3.5.4], K1
G(B) is realized as the space of G-homotopy

classes of G-equivariant maps from B to Fred1(L2(G)⊗H):

K1
G(B) ' [B,Fred1(L2(G)⊗H)]G. (B.1)

Let T = D(F)/(1 +D(F)2)1/2. Then T is bounded, G-equivariant and Ind(T ) =

Ind(D(F)) ∈ K1
G(B). Moreover

√
−1T can be extended to an equivariant map

from B to Fred1(L2(G)⊗H) by taking the identity map on the complement of E in

B×L2(G)⊗C(R)⊗H. By [26, §3.5.4 and Proposition A.41], Ind(D(F)) = Ind(T ) ∈
K1
G(B) corresponds to the element of K0

G(B× (0, 1
2 )) ' [B× (0, 1

2 ),Fred′
0
(L2(G)⊗

H)]G given by

D(θ) = cos(2πθ) +
√
−1T sin(2πθ), θ ∈ (0,

1

2
). (B.2)

Here Fred′
0
(L2(G) ⊗ H) consists of the elements in Fred0(L2(G) ⊗ H) which is

invertible outside a compact set of the parameter space (see also [4, p6], [44, (3.1)]).

By applying the natural inclusion K0
G(B × (0, 1

2 )) → K0
G(B × S1), we obtain an

element of K0
G(B × S1) which lies in the image of j in (2.19), thus an element of

K1
G(B).

The following proposition is the equivariant version of [44, Proposition 6]. We

prove it here using the notation in Example 2.5 d) for the completeness.

Proposition B.1. For F ∈ F1
G(B), there exists inclusion i : B → B × S1 such

that i∗ Ind(D(p∗1F ×B×S1 p∗2FL)) = 0. Moreover, as an element of K1
G(B), we have

j
(

Ind(D(F))
)

= Ind(D(p∗1F ×B×S1 p∗2FL)). (B.3)

Proof. In order to compare our definition with that in [4], we replace the connec-

tion in (2.28) by ∇L = d+ 2π(θ − 1/4)
√
−1dt. Since from (2.4) and (2.5),

D(p∗1F ×B×S1 p∗2FL) = D(F)⊗ J +D(FL)⊗K, (B.4)

the index in the right hand side of (B.3) does not vary in K0
G(B × S1) after the

replacement. Then we could calculate that for θ ∈ [0, 1), the eigenvalues of D(FL)

are {λk = 2πk + 2π(θ − 1
4 )}k∈Z and the eigenspace of λk is one dimensional for

any k ∈ Z. Let s be a local frame of L. The eigenfunction of λk is vk(t) =

exp(2πk
√
−1t)s. From (B.4), D(p∗1F ×B×S1 p∗2FL)2 = (D(F)2 +D(FL)2)⊗ IdC2 .
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So it is invertible if and only if θ 6= 1/4. Thus for inclusion i : B → B × S1,

i(B) = B × { 1
2}, i

∗ Ind(D(p∗1F ×B×S1 p∗2FL)) = 0.

Fix b ∈ B. Since SS1×Z = SS1 ⊗ SZ ⊗ C2, we have

L2(S1
t × Zb,SS1×Z⊗̂L⊗̂E) = ′

⊕
k∈Z

Cvk(t)⊗ L2(Zb,SZ⊗̂E)⊗ C2. (B.5)

Here ′⊕ stands for the direct sum in the category of Hilbert spaces. If k 6= 0,

D(p∗1F×B×S1p∗2FL)2|Cvk(t)⊗L2(Zb,SZ⊗̂E)⊗C2 > 0. LetH+ = Cv0(t)⊗L2(Zb,SZ⊗̂E)⊗
(C⊕ {0}), H− = Cv0(t)⊗ L2(Zb,SZ⊗̂E)⊗ ({0} ⊕ C). Then

Ind(D(p∗1F ×B×S1 p∗2FL)) = Ind
(
D(p∗1F ×B×S1 p∗2FL)+ : H+ → H−

)
. (B.6)

We define the isomorphisms φ+ : H+ → L2(Zb,SZ⊗̂E), φ− : H− → L2(Zb,SZ⊗̂E),

by φ+(v0(t)⊗l⊗(1, 0)) = l, φ−(v0(t)⊗l⊗(0, 1)) = l. Set D+ := φ−◦D(p∗1F×B×S1

p∗2FL)+ ◦ φ−1
+ . Then on L2(Zb,SZ⊗̂E), from (2.4) and (B.4), we have

D+ =
√
−1D(F) + λ0(θ). (B.7)

From (B.2) and (B.7), for θ ∈ (0, 1
2 ), we have

Ind(D(p∗1F ×B×S1 p∗2FL)) = Ind

(
D(p∗1F ×B×S1 p∗2FL)+√
1 +D(p∗1F ×B×S1 p∗2FL)2

: H+ → H−

)

= Ind

(
D+√

1 + λ0(θ)2 +D(F)2

)
= Ind

(
λ0(θ) +

√
−1D(F)√

1 + λ0(θ)2 +D(F)2

)
= Ind (D(θ)) . (B.8)

Since D(p∗1F×B×S1 p∗2FL) and D(θ) are invertible for θ 6= 1
4 , we obtain Proposition

B.1.
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